注意力的种类有如下四种: 加法注意力, Bahdanau Attention 点乘注意力, Luong Attention 自注意力, Self-Attention 多头点乘注意力, Multi-Head Dot Product Attention(请转至Transformer ...
一 基本概念 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理 语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影。所以,了解注意力机制的工作原理对于关注深度学习技术发展的技术人员来说有很大的必要。 人类的视觉注意力 从注意力模型的命名方式看,很明显其借鉴了人类的注意力机制,因此,我们首先简单介绍人类视觉的选择性注意力机制。 图 人类的视觉注意力 视觉注意力 ...
2021-03-08 16:43 0 462 推荐指数:
注意力的种类有如下四种: 加法注意力, Bahdanau Attention 点乘注意力, Luong Attention 自注意力, Self-Attention 多头点乘注意力, Multi-Head Dot Product Attention(请转至Transformer ...
注意力机制分为:通道注意力机制, 空间注意力机制, 通道_空间注意力机制, 自注意力机制 参考: https://blog.csdn.net/weixin_44791964/article/details/121371986 通道注意力机制 SENet 其重点是获得输入进来的特征层 ...
有一些其他理论先暂时不讲了,直奔今天的主题 视觉注意力机制 视觉注意力机制根据 关注域 的不同,可分为三大类:空间域、通道域、混合域 空间域:将图片中的 空间域信息 做对应的 变换,从而将关键得信息提取出来。对空间进行掩码的生成,进行打分,代表是 Spatial Attention ...
注意力机制中的软和硬 注意力机制是当前深度学习领域比较流行的一个概念。其模仿人的视觉注意力模式,每次只关注与当前任务最相关的源域信息,使得信息的索取更为高效。 注意力机制已在语言模型、图像标注等诸多领域取得了突破进展。 注意力机制可分为软和硬两类: 软性注意力(Soft ...
一、传统编码-解码机制 设输入序列$\{x^1,x^2,...,x^n\}$,输出序列$\{y^1,y^2,...,y^m\}$,encoder的隐向量为$h_1,h_2,...$,decoder的隐向量为$s_1,s_2,...$。 解码器的输入只有一个向量,该向量就是输入序列经过编码器 ...
attention机制原多用于NLP领域,是谷歌提出的transformer架构中的核心概念。现在cv领域也开始越来越多的使用这种方法。本次分享对注意力机制进行了相关的梳理,旨在帮助大家入门attention机制,初步了解attention的结构以及背后原理。 1. attention概念 ...
假设现在有一个句子(s1,s2,s3),v是s的转置 第一个词和每一个词的内积 相似度越大 结果越大 s1v1 s1v2 s1v3 第二个词和每一个词的内积 s2v1 s2v1 s2v3 第三个词 ...
论文地址:Attention-GAN for Object Transfiguration in Wild Images 最近学习了一下ECCV2018的attentionGAN,文章中attention能自动注意到 前景目标 的现象让我感觉很神奇,同时又很困惑,在这个以CycleGAN为框架 ...