论文:Deep Knowledge Tracing Addressing Two Problems in Deep Knowledge Tracing via Prediction-Consistent Regularization How Deep ...
本文旨在总结目前看过的关于在知识追踪 Knowledge Tracing 中使用Attention的文章 EKT: Exercise aware Knowledge Tracing for Student Performance Prediction EERNN EERNN负责对习题进行嵌入表示,原本的EERNN把几个知识点合在一起了,对单个知识点掌握的解释性不够,现在把杂糅的KC向量转换为KC矩 ...
2021-03-03 09:58 0 286 推荐指数:
论文:Deep Knowledge Tracing Addressing Two Problems in Deep Knowledge Tracing via Prediction-Consistent Regularization How Deep ...
摘要 这篇文章提出了AKT模型, 使用了单调性注意力机制, 考虑过去的做题记录来决策未来的做题结果, 另外使用了Rasch 模型来正则化习题和概念的嵌入。 AKT方法 1上下文感知表示和知识检索 ...
2017年2月15日,谷歌举办了首届TensorFlow Dev Summit,并且发布了TensorFlow 1.0 正式版。 3月18号,上海的谷歌开发者社区(GDG)组织了针对峰会的专场回顾活动 ...
这篇论文试图将GAT应用于KG任务中,但是问题是知识图谱中实体与实体之间关系并不相同,因此结构信息不再是简单的节点与节点之间的相邻关系。这里进行了一些小的trick进行改进,即在将实体特征拼接在一起的时候还同时考虑了两个实体之间的关系向量。 就像上面图里所表示的,三个特征向量 ...
目前,教育领域通过引入人工智能的技术,使得在线的教学系统成为了智能教学系统(ITS),ITS不同与以往的MOOC形式的课程。ITS能够个性化的为学生制定有效的 学习路径,通过根据学生的答题情况追踪学生当前的一个知识点掌握状况,从而可以做到因材施教。 在智能教学系统中 ...
基于Attention的知识图谱关系预测 论文地址 Abstract 关于知识库完成的研究(也称为关系预测)的任务越来越受关注。多项最新研究表明,基于卷积神经网络(CNN)的模型会生成更丰富,更具表达力的特征嵌入,因此在关系预测上也能很好地发挥作用。但是这些知识图谱的嵌入独立地处理三元组 ...
Attention mechanism中,给输入序列中对应的每一个Ht分配权重(打分)究竟是如何打分? 输入序列打分,a(s, h) 其中s是输出序列的t-1时刻的隐藏层状态,h是输入的多个状态, ...
原文链接: https://blog.csdn.net/qq_41058526/article/details/80578932 attention 总结 参考:注意力机制(Attention Mechanism)在自然语言处理中的应用 Attention函数 ...