在上一篇的基础上,对数据调用keras图片预处理函数preprocess_input做归一化预处理,进行训练。 导入preprocess_input: 数据生成添加preprocessing_function=preprocess_input 训练25epoch ...
本文将介绍: 使用keras实现resnet 模型 实现迁移学习 finetune 一,下载kaggle monkey数据 下载dataset到本地目录intput中 二,使用keras中ImageDataGenerator读取数据 数据增强 ,使用keras中ImageDataGenerator读取数据 数据增强 usr bin env python coding: utf import ma ...
2021-03-02 15:46 0 843 推荐指数:
在上一篇的基础上,对数据调用keras图片预处理函数preprocess_input做归一化预处理,进行训练。 导入preprocess_input: 数据生成添加preprocessing_function=preprocess_input 训练25epoch ...
前面用一个简单的4层卷积网络,以猫狗共25000张图片作为训练数据,经过100 epochs的训练,最终得到的准确度为90%。 深度学习中有一种重要的学习方法是迁移学习,可以在现有训练好的模型基础上针对具体的问题进行学习训练,简化学习过程。 这里以imagenet的resnet50模型进行迁移 ...
在https://www.cnblogs.com/zhengbiqing/p/11780161.html中直接在resnet网络的卷积层后添加一层分类层,得到一个最简单的迁移学习模型,得到的结果为95.3%。 这里对最后的分类网络做些优化:用GlobalAveragePooling2D替换 ...
pytorch实战 猫狗大战Kaggle 迁移学习ResNet50模型微调 猫狗大战数据集 这是kaggle上一个非常经典的二分类图像数据集,训练集包括25000张猫和狗的图片及其标签,测试集则是12500张未标签图片,数据下载地址https://www.kaggle.com/c ...
图像分类识别中,可以根据热力图来观察模型根据图片的哪部分决定图片属于一个分类。 以前面的Resnet50模型为例:https://www.cnblogs.com/zhengbiqing/p/11964301.html 输出模型结构为: 识别图片,得到热力图: 其中: ...
了resnet50,但是我没训练,因为没有好的224*224的数据集,硬盘太小,大的程序也跑不起来,今天把代码贴出来, ...
最近学习了一下ResNet50模型,用其跑了个Kaggle比赛,并仔细阅读了其Keras实现。在比赛中,我修改了一下源码,加入了正则项,激活函数改为elu, 日后的应用中也可以直接copy 使用之。 ResNet50 的结构图网上已经很多了,例如这篇博文:https ...
作者|DR. VAIBHAV KUMAR 编译|VK 来源|Analytics In Diamag PyTorch通过提供大量强大的工具和技术,一直在推动计算机视觉和深度学习领域的发展。 在计算机视觉领域,基于深度学习的执行需要处理大量的图像数据集,因此需要一个加速的环境来加快执行过程以达到 ...