ShuffleNet系列是轻量级网络中很重要的一个系列,ShuffleNetV1提出了channel shuffle操作,使得网络可以尽情地使用分组卷积来加速,而ShuffleNetV2则推倒V1的大部分设计,从实际出发,提出channel split操作,在加速网络的同时进行了特征重用 ...
文章目录 . ShuffleNet V 理解 . group convolution的参数量与计算量 . 分组卷积的问题与channel shuffle . ShuffleNet V 代码理解 . shuffleNet V 理解 . ShuffleNet V 理解 ShuffleNet可以看成是group convolution和depth wise separable convolution的 ...
2020-12-19 14:21 0 379 推荐指数:
ShuffleNet系列是轻量级网络中很重要的一个系列,ShuffleNetV1提出了channel shuffle操作,使得网络可以尽情地使用分组卷积来加速,而ShuffleNetV2则推倒V1的大部分设计,从实际出发,提出channel split操作,在加速网络的同时进行了特征重用 ...
以下都是基于yolo v2版本的,对于现在的v3版本,可以先clone下来,再git checkout回v2版本。 玩了三四个月的yolo后发现数值相当不稳定,yolo只能用来小打小闹了。 v2训练的权重用v3做预测,结果不一样。 我的环境是 window 10 ...
先介绍YOLO[转]: 第一个颠覆ross的RCNN系列,提出region-free,把检测任务直接转换为回归来做,第一次做到精度可以,且实时性很好。 1. 直接将原图划分为SxS个grid cel ...
MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型。 关于MobileNet v1的介绍,请看这篇:对MobileNet网络结构的解读 MobileNet ...
概述 YOLO(You Only Look Once: Unified, Real-Time Object Detection)从v1版本进化到了v2版本,作者在darknet主页先行一步放出源代码,论文在我们等候之下终于在12月25日发布出来。 新的YOLO版本论文全名叫“YOLO9000 ...
花了点时间梳理了一下DeepLab系列的工作,主要关注每篇工作的背景和贡献,理清它们之间的联系,而实验和部分细节并没有过多介绍,请见谅。 DeepLabv1 Semantic image segm ...
deeplab系列总结(deeplab v1& v2 & v3 & v3+) Deeplab v1&v2paper: deeplab v1 && deeplab v2 远古版本的deeplab系列,就像RCNN一样,其实了解了后面的v3和v ...
项目实现:GitHub 参考博客:CNN模型之ShuffleNet v1论文:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices v2论文:ShuffleNet V2 ...