make_classification创建用于分类的数据集,官方文档 例子: ### 创建模型 def create_model(): # 生成数据 from sklearn.datasets import make_classification ...
from sklearn.datasets import make classification X, y make classification n samples , 样本个数 n features , 特征个数 n informative , 有效特征个数 n redundant , 冗余特征个数 有效特征的随机组合 n repeated , 重复特征个数 有效特征和冗余特征的随机组合 n ...
2021-02-25 17:31 0 1444 推荐指数:
make_classification创建用于分类的数据集,官方文档 例子: ### 创建模型 def create_model(): # 生成数据 from sklearn.datasets import make_classification ...
Generate a random multilabel classification problem. For each sample, the generative process is: pick the number of labels: n ...
一、介绍 scikit-learn 包含各种随机样本的生成器,可以用来建立可控制大小和复杂性的人工数据集。 make_blob() —— 聚类生成器 make_classification() —— 单标签分类生成器 make_multilabel_classification ...
卷积神经网络(CNN) 具体解释见文章 以下是代码实现: 1. 加载数据 PyTorch里包含了 MNIST, CIFAR10 等常用数据集,调用 torchvision.datasets 即可把这些数据由远程下载到本地,下面给出MNIST的使用方法 ...
pytorch创建自己的数据集(分类任务) ...
第5章图像分类的数据集 在我们实际进入到代码编写阶段来构建分类器之前,我们首先回顾下在本书中用到的数据集。一些数据集可理想的获得大于95%的准确率,另一些则还在开放研究阶段,还有一些是图像分类竞赛的部分数据集。 现在就对这些数据集进行回顾是很重要的,这样我们就可以在以后的章节中对我们在使用 ...
一、前言 1、前广泛使用的图像分类数据集之一是 MNIST 数据集,虽然它是很不错的基准数据集,但按今天的标准,即使是简单的模型也能达到95%以上的分类准确率,因此不适合区分强模型和弱模型。 2、为了提高难度,我们将在接下来的章节中讨论在2017年发布的性质相似但相对复杂 ...
任务目标 对MNIST手写数字数据集进行训练和评估,最终使得模型能够在测试集上达到\(98\%\)的正确率。(最终本文达到了\(99.36\%\)) 使用的库的版本: python:3.8.12 pytorch:1.5.1 代码地址GitHub:https ...