数据倾斜的原因: 1. 存在bigkey - 业务层避免bigkey - 将集合类型的bigkey拆分为多个小集合 2. slot手工分配不均 3. hashtag 导致数据分配到同一个slot - 避免使用hashtag 访问倾斜的原因 ...
概述 redis 集群部署方式大部分采用类 Twemproxy 的方式进行部署。即通过 Twemproxy 对 redis key 进行分片计算,将 redis key 进行分片计算,分配到多个 redis 实例中的其中一个。tewmproxy 架构图如下: 由于 Twemproxy 背后的多个 redis 实例在内存配置和 cpu 配置上都是一致的,所以一旦出现访问量倾斜或者数据量倾斜,则可能会 ...
2021-02-25 15:43 0 367 推荐指数:
数据倾斜的原因: 1. 存在bigkey - 业务层避免bigkey - 将集合类型的bigkey拆分为多个小集合 2. slot手工分配不均 3. hashtag 导致数据分配到同一个slot - 避免使用hashtag 访问倾斜的原因 ...
参考:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842860.html 在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显。主要是因为在Job完成后的所得到的Counters是整个Job的总和 ...
秒杀过程:库存查验、库存扣减和订单处理:在库存查验过程:支撑大量高并发的库存查验请求,我们需要在这个环节使用 Redis 保存库存量,这样一来,请求可以直接从 Redis 中读取库存并进行查验。 订单处理可以在数据库中执行,但库存扣减操作,不能交给后端数据库处理。在数据库中处理订单的原因比较简单 ...
spark计算非常非常慢,通过web ui监视发现,有的task处理了好几百M的数据,有的 task ...
数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。 数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别 ...
spark数据倾斜处理 危害: 当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,未能充分发挥分布式系统的并行计算优势。 当发生数据倾斜时,部分任务处理的数据量过大,可能造成内存不足使得任务失败,并进而引进整个应用失败。 表现:同一个 ...
一、数据倾斜 1、什么是数据倾斜? 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点。 数据倾斜原理 目前我们所知道的大数据处理框架,比如 Flink、Spark、Hadoop 等之所以能处理高达千亿的数据,是因为这些框架都利用了分布式计算的思想,集群中多个计算节点并行,使得数据 ...
运行不完,此称之为数据倾斜。 1.万能膏药:hive.groupby.skewindata=true ...