1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。分类本质上 ...
总是很容易忘记一些专业术语的公式,可以先理解再去记住 .信息熵 entropy 反正就是先计算每一类别的占比,然后再乘法,最后再将每一类加起来 其中distribution 的功能就是计算一个series各类的占比 .基尼系数 GINI 具体公式如上,也是要先计算每一类别的分布 .信息增益 反正首先计算lable列的信息熵,然后再根据特征a的取值去分组,然后再计算组内label的信息熵,最后那原始 ...
2021-02-24 20:29 0 951 推荐指数:
1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。分类本质上 ...
既能做分类,又能做回归。分类:基尼值作为节点分类依据。回归:最小方差作为节点的依据。 节点越不纯,基尼值越大,熵值越大 pi表示在信息熵部分中有介绍,如下图中介绍 方差越小越好。 选择最小的那个0.3 ...
一、信息熵 百科:信息熵 衡量信息的不确定度; 1)理论提出 信息论之父 C. E. Shannon 指出:任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关 ...
四、划分选择 1、属性划分选择 构造决策树的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高。 常用属性划分的准则: (1)ID3:信息增益 (2)C4.5:增益率 ...
什么是机器学习? 机器学习:简单来说就是机器通过一系列任务从经验(数据)中学习并且评估效果如何。 机器学习中很多地方都要根据目前的信息做出决策,信息熵主要是反应信息的不确定性,他的一个很重要的作用就是做决策时提供一定的判断依据,比如决策树根据熵来往下设置分支。 信息上实际反应的是一个信息的不确定 ...
讨论这个话题。本文想讨论的是决策树中两个非常重要的决策指标:熵和基尼指数。熵和基尼指数都是用来定义随机 ...
一、信息熵的简介 2.1 信息的概念 信息是用来消除随机不确定性的东西。对于机器学习中的决策树而言,如果待分类的事物集合可以划分为多个类别当中,则第k类的信息可以定义如下: 2.2 信息熵概念 信息熵是用来度量不确定性,当熵越大,k的不确定性越大,反之越小。假定当前样本集合D中第k类 ...
基尼指数(Gini不纯度)表示在样本集合中一个随机选中的样本被分错的概率。 注意:Gini指数越小表示集合中被选中的样本被参错的概率越小,也就是说集合的纯度越高,反之,集合越不纯。当集合中所有样本为一个类时,基尼指数为0. 基尼指数的计算方法为:其中,pk表示样本属于第k个类别的概率 举例 ...