原文:pytorch的backward函数求导原理与代码细节阐述

你知道pytorch的backward求导的要求吗 你想了解pytorch反向传播的原理吗 本文将记录不同结果对求导参数的要求,并使用代码详细说明,本文借鉴它人博客对pytorch反向传播原理进行解释。 backward函数解释 : 一. 如果是标量对向量求导 scalar对tensor求导 ,那么就可以保证上面的计算图的根节点只有一个,此时不用引入grad tensors参数 即梯度权重 ,直接 ...

2021-02-23 18:56 0 676 推荐指数:

查看详情

Pytorch中的自动求导函数backward()所需参数含义

摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是【N X M】 正常来说backward()函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿 ...

Mon Dec 24 01:40:00 CST 2018 3 9162
Pytorch学习之梯度计算backward函数

Pytorch在梯度方面提供的功能,大多是为神经网络而设计的。而官方文档给出的定义和解释比较抽象。以下将结合实例,总结一下自己对Pytorch中梯度计算backward函数的理解。 1. 简单的神经网络构建 首先我们看一个非常简单的神经网络。 假设x1,x2是神经网络的中间层,y ...

Sat Feb 22 08:20:00 CST 2020 0 3959
pytorchbackward

在学习的过程中遇见了一个问题,就是当使用backward()反向传播时传入参数的问题: 这里的backward()中为什么需要传入参数Variable(t.ones(1, 10))呢?没有传入就会报错: 这个错误的意思就是梯度只能为标量(即一个数)输出隐式地创建 ...

Fri Mar 29 01:15:00 CST 2019 2 3513
PyTorchbackward()函数的gradient参数作用

这篇文章讲得比较清晰,特地备份一下: pytorchbackward函数的gradient参数作用 问题引入 在深度学习中,经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。 PyTorch中 ...

Mon Oct 18 07:12:00 CST 2021 0 1177
Pytorchbackward

首先看这个自动求导的参数: grad_variables:形状与variable一致,对于y.backward(),grad_variables相当于链式法则dzdx=dzdy×dydx">dz/dx=dz/dy × dy/dx 中的 dz \over dy ...

Wed Jan 24 01:01:00 CST 2018 0 2898
ARTS-S pytorchbackward函数的gradient参数作用

导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源库都涉及到标量对向量求导.比如下面这个pytorch的例子. 简单解释下,设\(x ...

Fri Jun 14 22:38:00 CST 2019 1 1397
Pytorch autograd,backward详解

平常都是无脑使用backward,每次看到别人的代码里使用诸如autograd.grad这种方法的时候就有点抵触,今天花了点时间了解了一下原理,写下笔记以供以后参考。以下笔记基于Pytorch1.0 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识 ...

Thu Sep 19 22:45:00 CST 2019 1 3988
PyTorch中的backward [转]

转自:https://sherlockliao.github.io/2017/07/10/backward/ backward只能被应用在一个标量上,也就是一个一维tensor,或者传入跟变量相关的梯度。 特别注意Variable里面默认的参数requires_grad=False ...

Sun Dec 10 00:04:00 CST 2017 1 4405
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM