本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。 我们使用以下数据 k=620n=nrow(elec)futu=(k+1):ny=electricite$Load[1:k]plot(y ...
原文链接:http: tecdat.cn p 本文从实践角度讨论了季节性单位根。我们考虑一些时间序列,例如道路上的交通流量, gt plot T,X,type l gt reg lm X T gt abline reg,col red 如果存在趋势,我们应该将其删除,然后处理残差 gt Y residuals reg gt acf Y,lag ,lwd 我们可以看到这里有一些季节性。第一个策略可能 ...
2021-02-23 12:30 0 304 推荐指数:
本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。 我们使用以下数据 k=620n=nrow(elec)futu=(k+1):ny=electricite$Load[1:k]plot(y ...
上篇说明了分解非季节性数据的方法。就是通过TTS包的SMA()函数进行简单移动平均平滑。让看似没有规律或没有趋势的曲线变的有规律或趋势。然后再进行时间序列曲线的回归预测。 本次,开始分解季节性时间序列。 一个季节性时间序列中会包含三部分,趋势部分、季节性部分和无规则部分 ...
原文链接:http://tecdat.cn/?p=17622 最近,我们继续对时间序列建模进行探索,研究时间序列模型的自回归和条件异方差族。我们想了解自回归移动平均值(ARIMA)和广义自回归条件异方差(GARCH)模型。它们在量化金融文献中经常被引用。 接下来是我对这些模型的理解 ...
原文链接:http://tecdat.cn/?p=25122 原文出处:拓端数据部落公众号 当一个序列遵循随机游走模型时,就说它是非平稳的。我们可以通过对时间序列进行一阶差分来对其进行平稳化,这将产生一个平稳序列,即零均值白噪声序列。例如,股票的股价遵循随机游走模型,收益序列(价格序列 ...
原文链接:http://tecdat.cn/?p=21757 时间序列模型根据研究对象是否随机分为确定性模型和随机性模型两大类。 随机时间序列模型即是指仅用它的过去值及随机扰动项所建立起来的模型,建立具体的模型,需解决如下三个问题模型的具体形式、时序变量的滞后期以及随机扰动项的结构 ...
1、背景 公司平台上有不同的api,供内部或外部调用,这些api承担着不同的功能,如查询账号、发版、抢红包等等。日志会记录下每分钟某api被访问了多少次,即一个api每天会有1440条记录(1440分钟),将每天的数据连起来观察,有点类似于股票走势的意思。我想通过前N天的历史数据预测 ...
原文链接:http://tecdat.cn/?p=23934 原文出处:拓端数据部落公众号 引言 在本文中,我们将尝试为苹果公司的日收益率寻找一个合适的 GARCH 模型。波动率建模需要两个主要步骤。 指定一个均值方程(例如 ARMA,AR,MA,ARIMA 等)。 建立 ...
原文链接:http://tecdat.cn/?p=24057 原文出处:拓端数据部落公众号 1.概要 本文的目标是使用各种预测模型预测Google的未来股价,然后分析各种模型。Google股票数据集是使用R中的Quantmod软件包从Yahoo Finance获得的。 2.简介 预测 ...