上篇文章中,我们了解了枢轴量法,并用它处理了正态分布相关参数的区间估计。事实上,能给出正态分布参数较好形式的区间估计的原因,在于正态分布的点估计本身具有良好的性质——正态分布的可变换性、\(\chi^2\)分布的可加性、\(t\)分布和\(F\)分布具有分位数表、\(\bar X\)和\(S ...
上篇文章中,我们探讨了区间估计的相关基本概念,也提出了Neyman置信区间,今天我们将聚焦于如何寻找置信区间的问题上,并对最常用的总体:正态总体给出一些置信区间的找法。为了方便起见,以下我们都让置信水平为 alpha 。 由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢 目录 Part :枢轴量法 Part :分位数 Part :单正态总体参数区间估计 sigma 已知 ...
2021-02-17 01:19 0 1462 推荐指数:
上篇文章中,我们了解了枢轴量法,并用它处理了正态分布相关参数的区间估计。事实上,能给出正态分布参数较好形式的区间估计的原因,在于正态分布的点估计本身具有良好的性质——正态分布的可变换性、\(\chi^2\)分布的可加性、\(t\)分布和\(F\)分布具有分位数表、\(\bar X\)和\(S ...
Part 1:枢轴量法 枢轴变量法是基于点估计量的。我们知道,统计量是样本的函数,这意味着统计量中不能含有未知参数,而参数的点估计量是用统计量的观测值作为待估参数的估计值,其分布一定含有待估参数,枢轴量法的思想就是,通过一定的变换,让点估计的函数的分布不含待估参数,进而基于分布来构造区间估计 ...
现在,我们对正态分布的参数假设检验进行讨论,这也是本系列的最后一部分内容。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:基本步骤 Part 2:正态分布假设检验 Part 1:基本步骤 正态总体\(N ...
的讨论给出了常用分布的参数点估计,并介绍了两种常用于寻找点估计量的方法——矩法与极大似然法;最后,我们对 ...
注:区间估计是除点估计之外的另一类参数估计。相对于点估计只给出一个具体的数值,区间估计能够给出一个估计的范围。 0. 点估计 vs 区间估计 根据具体样本观察值,点估计提供了一个明确的数值。但是这种判断的把握有多大,点估计本身并没有给出。区间估计就是为了弥补点估计的这种不足而提 ...
Section 2:齐一性检验 Part 3:正态性检验 附录 1、ch ...
在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法。今天我们将讨论常用的点估计方法:矩估计、极大似然估计,它们各有优劣,但都很重要。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 ...
2:似然比检验 Part 3:假设检验与区间估计 Part 1:NP理论的基本概念 NP ...