极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计。本文旨在通俗理解MLE(Maximum Likelihood Estimate)。 一、极大似然估计的思想与举例 举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽 ...
在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法。今天我们将讨论常用的点估计方法:矩估计 极大似然估计,它们各有优劣,但都很重要。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢 目录 Part :矩法估计 Part :极大似然估计 Part :一个例题 Part :矩法估计 矩法估计的重点就在于 矩 字, ...
2021-02-07 11:54 0 936 推荐指数:
极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计。本文旨在通俗理解MLE(Maximum Likelihood Estimate)。 一、极大似然估计的思想与举例 举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽 ...
一、为什么要估计(estimate) 在概率,统计学中,我们所要观测的数据往往是很大的,(比如统计全国身高情况)我们几乎不可能去统计如此之多的值。这时候,就需要用到估计了。我们先抽取样本,然后通过统计样本的情况,去估计总体。下面是数学中常用到的术语: ·总体(Populantion ...
在之前的学习中,主要基于充分统计量给出点估计,并且注重于点估计的无偏性与相合性。然而,仅有这两个性质是不足的,无偏性只能保证统计量的均值与待估参数一致,却无法控制统计量可能偏离待估参数的程度;相合性只能在大样本下保证统计量到均值的收敛性,但却对小样本情形束手无策。今天我们将注重于统计量的有效性 ...
极大似然估计(MLE)和极大后验估计(MAP)分别是频率学派和贝叶斯学派(统计学者分为两大学派,频率学派认为参数是非随机的,而贝叶斯学派认为参数也是随机变量)的参数估计方法,下面我们以线性回归分析为例,分别简要介绍MLE和MAP,两者的关系以及分别与最小二乘回归、正则化最小二乘回归分析的关系 ...
上篇文章中,我们探讨了区间估计的相关基本概念,也提出了Neyman置信区间,今天我们将聚焦于如何寻找置信区间的问题上,并对最常用的总体:正态总体给出一些置信区间的找法。为了方便起见,以下我们都让置信水平为\(1-\alpha\)。 由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区 ...
注:点估计是参数估计中的一种。点估计常用的方法有两种:矩估计和最大似然估计。之所以要做估计,最本质的问题是我们能获得的信息量(样本的数量)有限,因此只能在有限的信息中,用合理的方法、在可接受的精度或置信度下做近似计算,以便对总体有一个大概的认识,也就是将某种在有限样本中获得的规律,推广到更大的样本 ...
的讨论给出了常用分布的参数点估计,并介绍了两种常用于寻找点估计量的方法——矩法与极大似然法;最后,我们对 ...
注:区间估计是除点估计之外的另一类参数估计。相对于点估计只给出一个具体的数值,区间估计能够给出一个估计的范围。 0. 点估计 vs 区间估计 根据具体样本观察值,点估计提供了一个明确的数值。但是这种判断的把握有多大,点估计本身并没有给出。区间估计就是为了弥补点估计的这种不足而提 ...