原文:对图像进行SVD和PCA降维,可用于压缩或者图像数据增强(python版)

不懂原理的同学请参考: https: blog.csdn.net qq article details utm medium distribute.pc relevant.none task blog BlogCommendFromMachineLearnPai .control amp depth utm source distribute.pc relevant.none task blog ...

2021-02-06 17:55 0 467 推荐指数:

查看详情

SVD 进行图像压缩

\(A\) 为 \(m \times n\) 实矩阵, 记 SVD 的一般形式为 \[A = U\Sigma V', \] 其中 \(U=(u_1,\dots,u_m)\), \(V=(v_1,\dots,v_n)\) 为正交阵, \[\Sigma = \begin ...

Thu Mar 07 21:51:00 CST 2019 0 1211
利用奇异值分解(SVD)进行图像压缩-python实现

首先要声明,图片的算法有很多,如JPEG算法,SVD对图片的压缩可能并不是最佳选择,这里主要说明SVD可以降维 相对于PAC(主成分分析),SVD(奇异值分解)对数据的列和行都进行降维,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。一张 ...

Sat Dec 22 03:06:00 CST 2018 0 602
Python中使用K-Means聚类和PCA主成分分析进行图像压缩

各位读者好,在这片文章中我们尝试使用sklearn库比较k-means聚类算法和主成分分析(PCA)在图像压缩上的实现和结果。 压缩图像的效果通过占用的减少比例以及和原始图像的差异大小来评估。 图像压缩的目的是在保持与原始图像的相似性的同时,使图像占用的空间尽可能地减小,这由图像的差异百分比 ...

Thu Apr 09 21:43:00 CST 2020 0 889
python——矩阵的奇异值分解,对图像进行SVD

矩阵SVD   奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看做是对方阵在任意矩阵上的推广。Singular的意思是突出的,奇特的,非凡的,按照这样的翻译似乎也可以叫做矩阵的优值分解。   假设矩阵A是一个m*n阶的实矩阵,则存在一个分解 ...

Wed Apr 24 04:58:00 CST 2019 0 2502
降维方法PCASVD的联系与区别

在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析)。 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系。本文在简单介绍PCASVD原理的基础上比较了两者的区别与联系,以及两者适用的场景和得到的效果 ...

Mon Jul 09 00:45:00 CST 2018 2 5677
奇异值分解(SVD)和简单图像压缩

SVD(Singular Value Decomposition,奇异值分解) 算法优缺点: 优点:简化数据,去除噪声,提高算法结果 缺点:数据的转换可能难于理解 适用数据类型:数值型数据 算法思想: 很多情 ...

Fri Dec 12 08:06:00 CST 2014 0 4923
初识PCA数据降维

  PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵。 一.预备知识   1.1 协方差分析   对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个 ...

Sat Jun 27 19:47:00 CST 2015 0 8451
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM