原文地址:https://zhuanlan.zhihu.com/p/72370235 好文必须共享,感谢贪心科技的李文哲老师。讲得非常透彻。 以下是我的学习笔记 MLE(极大似然估计)、MAP(最大后验估计)以及贝叶斯估计(Bayesian) 三者的关系是什么呢? 一个具体的例子 ...
https: zhuanlan.zhihu.com p .MLE MAP Bayesian 首先要明确这三个概念。 MLE是极大似然估计Maximum Likelihood Estimation。其目标为求解: theta argmaxP D theta MAP是最大后验概率Maximum A Posteriori Estimation。其目标是求解: theta argmaxP theta D ...
2021-02-05 19:44 0 318 推荐指数:
原文地址:https://zhuanlan.zhihu.com/p/72370235 好文必须共享,感谢贪心科技的李文哲老师。讲得非常透彻。 以下是我的学习笔记 MLE(极大似然估计)、MAP(最大后验估计)以及贝叶斯估计(Bayesian) 三者的关系是什么呢? 一个具体的例子 ...
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法。 1、最大似然估计(MLE) 在已知试验结果(即是样本)的情况下 ...
机器学习基础 目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率(MAE ...
贝叶斯在机器学习中的应用(一) 一:前提知识 具备大学概率论基础知识 熟知概率论相关公式,并知晓其本质含义/或实质意义 二:入门介绍 先验概率:即正向求解概率。 如:四个红球,两个 ...
最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素贝叶斯。本文在对朴素贝叶斯进行简单介绍之后,通过Python编程加以实现。 一 朴素贝叶斯概述 ...
的条件下都是条件独立的。 1、朴素贝叶斯朴素在哪里? 简单来说:利用贝叶斯定理求解联合概率P( ...
贝叶斯理论应用于机器学习方面产生了多种不同的方法和多个定理,会让人有些混淆。主要有最大后验概率,极大似然估计(MLE),朴素贝叶斯分类器,还有一个最小描述长度准则。 贝叶斯理论是基于概率的理论,设\(\lambda_{ij}\)是将实为\(c_j\)的样本标记为\(c_i\)的损失,则将 ...
0. 前言 这是一篇关于贝叶斯方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子。更严格的公式和计算我会在相应的地方注明参考资料。贝叶斯方法被证明是非常 general 且强大的推理框架,文中你会看到很多有趣的应用。 1. 历史 托马斯·贝叶斯(Thomas Bayes)同学 ...