由于各种原因,现实世界中的许多数据集都包含缺失值,通常把缺失值编码为空白,NaN或其他占位符。但是,此类数据集与scikit-learn估计器不兼容,这是因为scikit-learn的估计器假定数组中的所有值都是数字,并且都存在有价值的含义。如果必须使用不完整数据集,那么处理缺失数据的基本策略 ...
当然第一步仍然是判断是Missing at Random 还是Missing Not at Random,一般前者删除,后者插补。但是插补不一定能带来更好结果,要先自己根据缺失比例,和原因判断。 就近插补:前推法LOCF, 替换为缺失之前的最后一次观测值,与后推法NOCB, 使用缺失值后面的观测值进行填补。这个是时序当中最基本的方法,当然还有用Baseline Observaton, 或者啥Wo ...
2021-02-03 21:48 0 1114 推荐指数:
由于各种原因,现实世界中的许多数据集都包含缺失值,通常把缺失值编码为空白,NaN或其他占位符。但是,此类数据集与scikit-learn估计器不兼容,这是因为scikit-learn的估计器假定数组中的所有值都是数字,并且都存在有价值的含义。如果必须使用不完整数据集,那么处理缺失数据的基本策略 ...
...
数据预处理 1 数据集加载 这里使用mice软件包下的nhanes2数据集进行演示,这是一个含有缺失值的小规模数据集。 library(lattice) library(MASS) library(nnet) library(mice) data("nhanes2") dim ...
插补法可以在一定程度上减少偏差,常用的插补法是热卡插补、拟合插补和多重插补。拟合插补,要求变量间存在强的相关性;多重插补(MCMC法),是在高缺失率下的首选插补方法,优点是考虑了缺失值的不确定性。 一,热卡插补 热卡填充(Hot deck imputation)也叫就近补齐,对于一个包含空值 ...
使用随机森林回归填补缺失值,结果不可解释 ...
有的时候,一些时刻或连续时间段内的值无法采集到,或者本身就没有值,本文将介绍如何处理这种情况。 一般而言,有以下几种方法: 对所有的缺失值用零填充。 前向填充:比如用周一的值填充缺失的周二的值 后向填充:比如用周二的值填充缺失的周一的值 采用n最近 ...
作者|KAUSHIK 编译|VK 来源|Analytics Vidhya 概述 学会用KNNImputer来填补数据中的缺失值 了解缺失值及其类型 介绍 scikit learn公司的KNNImputer是一种广泛使用的缺失值插补方法。它被广泛认为是传统插补技术 ...
处理缺失值--多重插补 多重插补(MI)是一种基于重复模拟的处理缺失值的方法。在面对复杂的缺失值问题时,MI是最常选用的方法,它将从一个包含缺失值的数据集中生成一组完整的数据集(通常是3到10个)。每个模拟数据集中,缺失数据将用蒙特卡洛方法来填补。此时,标准的统计方法便可应用到每个模拟的数据 ...