转自:https://blog.csdn.net/anshuai_aw1/article/details/83275299 本篇文章主要参考柯国霖大神在知乎上的回答,以及自己阅读LGBM的部分源码整理而来。 1、one-hot编码弊端 one-hot编码是处理类别特征的一个通用方法 ...
其中count encoder,one hot encoder,label encoder主要针对低基数无序特征,比如性别。可以采用target encoder或者mean encoder的方法来针对高基数无序特征,比如地区,邮编等 一 Label Encoding LabelEncoder 将转换成连续的数值型变量。即是对不连续的数字或者文本进行编号,我们知道,梯度提升树模型是无法对此类特征进 ...
2021-02-02 09:55 0 397 推荐指数:
转自:https://blog.csdn.net/anshuai_aw1/article/details/83275299 本篇文章主要参考柯国霖大神在知乎上的回答,以及自己阅读LGBM的部分源码整理而来。 1、one-hot编码弊端 one-hot编码是处理类别特征的一个通用方法 ...
另外一种将标称型特征转换为能够被scikit-learn中模型使用的编码是one-of-K, 又称为 独热码或dummy encoding。 这种编码类型已经在类OneHotEncoder中实现。该类把每一个具有n_categories个可能取值的categorical特征变换为长度 ...
在机器学习中,特征经常不是连续的数值型的而是标称型的(categorical)。举个示例,一个人的样本具有特征["male", "female"], ["from Europe", "from US", "from Asia"], ["uses Firefox", "uses Chrome ...
原文:https://zhuanlan.zhihu.com/p/26308272 插入一条信息:特征编码一定要考虑是否需要距离度量,编码方式对距离度量的适应:例如:我们用one-hot编码颜色,向量正交,各个颜色之间的距离等同,如果此处用序数编码显然不太合适,但是我们用one-hot编码星期 ...
https://www.deeplearn.me/1393.html 哑编码概念 先来讲解下哑编码的概念吧,当你的变量不是定量特征的时候是无法拿去进行训练模型的,哑编码主要是针对定性的特征进行处理然后得到可以用来训练的特征 关于定性和定量还是在这里也说明下,举个例子就可以看懂了 定性 ...
的方式是将其转化为one-hot编码,即给每一个类别增加一个特征。但是当类别数量增加的时候,ont-hot ...
注:本文是人工智能研究网的学习笔记 标称型特征编码(Encoding categorical feature) 有些情况下,某些特征的取值不是连续的数值,而是离散的标称变量(categorical)。 比如一个人的特征描述可能是下面的或几种: 这样的特征可以被有效的编码为整型特征 ...
目录 数据预处理:离散特征编码方法 无监督方法: 1.序号编码OrdinalEncoder 2.独热编码OneHotEncoder 3.二进制编码BinaryEncoder 4.计数编码 ...