张量操作 在tensorflow中,有很多操作张量的函数,有生成张量、创建随机张量、张量类型与形状变换和张量的切片与运算 生成张量 固定值张量 创建所有元素设置为零的张量。此操作返回一个dtype具有形状shape和所有元素设置为零的类型的张量 ...
一 维度变换 多维张量在物理上以一维的方式连续存储,通过定义维度和形状,在逻辑上把它理解为多维张量。 当对多维张量进行维度变换时,只是改变了逻辑上索引的方式,没有改变内存中的存储方式。 改变张量形状 使用函数:tf.reshape tensor, shape shape参数 :表示自动推导出长度 增加和删除维度 多维张量的轴,就是张量的维度,张量中轴的概念和用法,和 numpy 中一样。 轴也可以 ...
2021-01-28 22:05 0 401 推荐指数:
张量操作 在tensorflow中,有很多操作张量的函数,有生成张量、创建随机张量、张量类型与形状变换和张量的切片与运算 生成张量 固定值张量 创建所有元素设置为零的张量。此操作返回一个dtype具有形状shape和所有元素设置为零的类型的张量 ...
导入TensorFlow 运行tensorflow程序,需要导入tensorflow模块。 从TensorFlow 2.0开始,默认情况下会启用eager模式执行。 这为TensorFlow提供了一个更加互动的前端节。 from __future__ import ...
1.张量 张量可以说是TensorFlow的标志,因为整个框架的名称TensorFlow就是张量流的意思,全面的认识一下张量。在TensorFlow程序使用tensor数据结构来代表所有的数据,在计算图中,操作之间的数据都是Tensor,Tensor可以看做n维的数组或列表,每个tensor包含 ...
在TensorFlow中所有的数据都通过张量的形式表示,从功能上看张量可以被简单的理解为多维数据,其中零阶张量表示标量(一个数),第一阶张量为向量(一个一维数组),第n阶向量可以理解为一个n维数组。 但是TensorFlow中实现并不是直接采用数组的形式,它只是对TensorFlow中运算 ...
目录 张量的概念 创建张量 张量的数据类型 NumPy数据转换 固定张量 全0张量 全1张量 元素值相同的张量 随机数张量 正态分布 ...
张量的概念 TensorFlow中的Tensor就是张量,张量是数学对象,是对标量、向量、矩阵的泛化。我们可以直接理解成张量就是列表,就是多维数组。 张量的维数用阶来表示: 0阶张量 标量 单个值 例:a = 11阶张量 向量 1维数组 例:a = [1,2,3]2阶张量 矩阵 2维 ...
1、创建张量 通过 tf.convert_to_tensor 函数可以创建新 Tensor,并将保存在 Python List 对象或者Numpy Array 对象中的数据导入到新 Tensor 中。 通过 tf.zeros()和 tf.ones()即可创建任意形状,内容为全0或全 ...
张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor)。 张量(Tensor)是任意维度的数组。 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howdy\' 或 5 1阶张量:向量 (vector)或矢量,也就是一维数组(一组有序 ...