一、概述 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在机器学习中属于监督学习。在数据分析等领域应用十分广泛。 很多情况下我们都用它进行预测,比如预测房屋价格。在这里用一个简单的例子来说明,假设有一组房屋数据,为了理解方便,假设 ...
损失函数 总损失定义为: yi为第i个训练样本的真实值 h xi 为第i个训练样本特征值组合预测函数 又称最小二乘法 正规方程 理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果 缺点:当特征过多过复杂时,求解速度太慢并且得不到结果 其中y是真实值矩阵,X是特征值矩阵,w是权重矩阵 对其求解关于w的最小值,起止y,X 均已知二次函数直接求导,导数为零的位置,即为最小值。 求导: 注:式 到式 ...
2021-01-23 22:00 0 315 推荐指数:
一、概述 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在机器学习中属于监督学习。在数据分析等领域应用十分广泛。 很多情况下我们都用它进行预测,比如预测房屋价格。在这里用一个简单的例子来说明,假设有一组房屋数据,为了理解方便,假设 ...
什么是损失函数 损失函数(Loss Function)也称代价函数(Cost Function),用来度量预测值与实际值之间的差异 公式: 其中E即使损失函数,y表示真实值,y'表示预测值,损失函数即使预测值与实际值之间的差 损失函数的作用 度量决策函数内f(x)和实际值 ...
转自:https://blog.csdn.net/javaisnotgood/article/details/78873819 Logistic回归cost函数的推导过程。算法求解使用如下的cost函数形式: 梯度下降算法 对于一个函数,我们要找它的最小值,有多种算法 ...
线性回归与梯度下降算法 作者:上品物语 转载自:线性回归与梯度下降算法讲解 知识点: 线性回归概念 梯度下降算法 l 批量梯度下降算法 l 随机梯度下降算法 l 算法收敛判断方法 1.1 线性回归 在统计学中 ...
1. 线性回归 回归(regression)问题指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系。 机器学习领域中多数问题都与预测相关,当我们想预测一个数值时,就会涉及到回归问题,如预测房价等。(预测不仅包含回归问题,还包含分类问题 ...
通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多: 图1. 迭代过程中的误差cost ...
看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic ...
\(\alpha\)的取值问题。还有在拟合线性模型时,如何选择正确的算法,梯度下降 or 最小二乘法? m ...