Coursera系列课程 第二周的向量化一节中,关于梯度下降法的向量化过程,开始不是很明白,后来自己推导了一下,记录到这里。 如下是梯度下降法的参数递归公式(假设n=2): 公式1: $\theta_0 := \theta_0 - \alpha \frac{1}{m}\sum_{i ...
线性回归中的梯度下降法 实现以及向量化并进行数据归一化 多元线性回归中的梯度下降法 我们试一下应用在多元线性回归中,对于线性回归的问题,前面的基本都是使每一次模型预测出的结果和数据所对应的真值的差的平方的和为损失函数,对于参数来说,有n 个元素,这种情况下,我们就需要变换式子 这实际上就是求对应的梯度值,梯度本身也是一个向量,含有n 个元素,即对每一个参数进行一次偏导数,这样一来,梯度就代表了方向 ...
2021-01-17 16:07 0 472 推荐指数:
Coursera系列课程 第二周的向量化一节中,关于梯度下降法的向量化过程,开始不是很明白,后来自己推导了一下,记录到这里。 如下是梯度下降法的参数递归公式(假设n=2): 公式1: $\theta_0 := \theta_0 - \alpha \frac{1}{m}\sum_{i ...
看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic ...
一、指导思想 # 只针对线性回归中的使用 算法的最优模型的功能:预测新的样本对应的值; 什么是最优的模型:能最大程度的拟合住数据集中的样本数据; 怎么才算最大程度的拟合:让数据集中的所有样本点,在特征空间中距离线性模型的距离的和最小;(以线性模型为例说明 ...
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小。另外,在运用随机梯度下降法之前需要利用 ...
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label ...
编者注:本文包含了使用Python2.X读取数据、数据处理、作图,构建梯度下降法函数求解一元线性回归,并对结果进行可视化展示,是非常综合的一篇文章,包含了Python的数据操作、可视化与机器学习等内容。学习了这一篇文章就大概了解或掌握相关Python编程与数据分析等内容。另外,本文还巧妙 ...
2019/3/25 一元线性回归——梯度下降/最小二乘法又名:一两位小数点的悲剧 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一样了,计算机虽然还是跟从现有语句/公式,但是在不断尝试中一步步接近目的地。 简单来说,梯度下降的目的 ...
梯度下降法 梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点 ...