作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看这两个函数之前,我们需要先了解一维卷积(conv1d)和二维卷积(conv2d),二维卷积是将一个特征图在width和height两个方向进行滑动窗口操作,对应 ...
卷积神经网络 CNN 是深度学习中常用的网络架构,在智能语音中也不例外,比如语音识别。语音中是按帧来处理的,每一帧处理完就得到了相对应的特征向量,常用的特征向量有MFCC等,通常处理完一帧得到的是一个 维的MFCC特征向量。假设一段语音有N帧,处理完这段语音后得到的是一个 行N列 行表示特征维度,列表示帧数 的矩阵,这个矩阵是一个平面,是CNN的输入。应用在图像问题上的CNN通常是二维卷积 因为图 ...
2021-01-25 09:46 0 4531 推荐指数:
作者:凌逆战 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看这两个函数之前,我们需要先了解一维卷积(conv1d)和二维卷积(conv2d),二维卷积是将一个特征图在width和height两个方向进行滑动窗口操作,对应 ...
一维卷积只在一个维度上进行卷积操作,而二维卷积会在二个维度上同时进行卷积操作。 转载自:https://www.cnblogs.com/LXP-Never/p/10763804.html 一维卷积:tf.layers.conv1d() 一维卷积常用于序列数据,如自然语言处理领域 ...
由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为14×14">14×1414×14,过滤器大小为5× ...
作者:szx_spark 由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。 1. 二维卷积 图中的输入的数据维度为\(14\times 14\),过滤器大小为\(5\times 5\),二者 ...
卷积神经网络这个词,应该在你开始学习人工智能不久后就听过了,那究竟什么叫卷积神经网络,今天我们就聊一聊这个问题。 不用思考,左右两张图就是两只可爱的小狗狗,但是两张图中小狗狗所处的位置是不同的,左侧图片小狗在图片的左侧,右侧图片小狗在图片的右下方,这样如果去用图片特征识别出来的结果,两张图 ...
一、学习心得及问题 心得 赵亮:对于卷积神经网络的定义有了初步的理解,卷积神经网络在图片分类、检索、分割、检测,人脸识别等领域有广泛的应用。使用局部关联、参数共享的方式解决了全连接网络过拟合的缺点。同时也了解了卷积的具体含义,对AlexNet、ZFNet、VGG等典型的神经网络结构有了初步 ...
在上篇中介绍的输入层与隐含层的连接称为全连接,如果输入数据是小块图像,比如8×8,那这种方法是可行的,但是如果输入图像是96×96,假设隐含层神经元100个,那么就有一百万个(96×96×100)参数需要学习,向前或向后传播计算时计算时间也会慢很多。 解决这类问题的一种简单 ...
先简单理解一下卷积这个东西。 (以下转自https://blog.csdn.net/bitcarmanlee/article/details/54729807 知乎是个好东西) 1.知乎上排名最高的解释 首先选取知乎上对卷积物理意义解答排名最靠前的回答。 不推荐用“反转/翻转/反褶/对称 ...