1. 四种情况 Precision精确率, Recall召回率,是二分类问题常用的评价指标。混淆矩阵如下: T和F代表True和False,是形容词,代表预测是否正确。 P和N代表Positive和Negative,是预测结果。 预测结果为阳性 ...
在处理深度学习分类问题时,会用到一些评价指标,如accuracy 准确率 等。刚开始接触时会感觉有点多有点绕,不太好理解。本文写出我的理解,同时以语音唤醒 唤醒词识别 来举例,希望能加深理解这些指标。 ,TP FP TN FN 下表表示为一个二分类的混淆矩阵 多分类同理,把不属于当前类的都认为是负例 ,表中的四个参数均用两个字母表示,第一个字母表示判断结果正确与否 正确用T True ,错误用F ...
2021-01-18 09:36 0 601 推荐指数:
1. 四种情况 Precision精确率, Recall召回率,是二分类问题常用的评价指标。混淆矩阵如下: T和F代表True和False,是形容词,代表预测是否正确。 P和N代表Positive和Negative,是预测结果。 预测结果为阳性 ...
评价指标 目录 评价指标 交并比-IOU 混淆矩阵-Confusion Matrix 准确率(Acc) 公式 特点 精准率(Precision) 公式 ...
记正样本为P,负样本为N,下表比较完整地总结了准确率accuracy、精度precision、召回率recall、F1-score等评价指标的计算方式: (右键点击在新页面打开,可查看清晰图像) 简单版: ******************************************************************** ...
对于二分类问题,precision,recall,auc,f1_score的计算原理都比较熟悉,但是多分类问题的计算还是有一点小小的区别,在使用sklearn.metrics的时候需要注意一下; 对于sklearn.metrics下的roc_auc_score, precision_score ...
0、概述 点击这里查看sklearn官方文档 sklearn.metrics模块实现了几个损失、得分和效用函数来衡量分类性能; 关于数据集: 为了训练分类模型,一般需要准备三个数据集:训练集train.txt、验证集dev.txt、测试集test.txt。 训练集:用来训练模型 ...
//2019.08.14#机器学习算法评价分类结果1、机器学习算法的评价指标一般有很多种,对于回归问题一般有MAE,MSE,AMSE等指标,而对于分类算法的评价指标则更多:准确度score,混淆矩阵、精准率、召回率以及ROC曲线、PR曲线等。2、对于分类算法只用准确率的评价指标是不够 ...
目录 结果表示方法 常规指标的意义与计算方式 ROC和AUC 结果表示方法 TP – True Positive FN – False Negative TN – True Negative FP – False Positive ...
查全率查准率是从信息检索来的,那么我们就得先看看原来的是怎么定义的: 查全率——它是指检出的相关文献量与检索系统中相关文献总量的比率 ...