定义:如果我们的随机变量是标准正态分布(详见以前博客的高斯分布),那么多个随机变量的平方和服从的分布即为卡方分布。 X=Y12+Y22+⋯+Yn2 其中,Y1,Y2,⋯,Yn均为服从标准正态分布的随机变量,那么XX服从卡方分布,值得注意的是其中的nn即随机变量的个数成为卡方分布的自由度 ...
目录 误差定义 阈值选取 误差定义 outlier 外点 野值会严重影响SLAM的精度,因此必须把它们剔除。常用的做法是,计算一个误差,当这个误差大于设定阈值的时候就认为其为外点。 就特征点法的视觉SLAM而言,一般会计算重投影误差。具体而言,记 mathbf u 为特征点的 D位置, overline mathbf u 为由地图点投影到图像上的 D位置。重投影误差为 重投影误差服从高斯分布 其 ...
2021-01-14 22:46 0 530 推荐指数:
定义:如果我们的随机变量是标准正态分布(详见以前博客的高斯分布),那么多个随机变量的平方和服从的分布即为卡方分布。 X=Y12+Y22+⋯+Yn2 其中,Y1,Y2,⋯,Yn均为服从标准正态分布的随机变量,那么XX服从卡方分布,值得注意的是其中的nn即随机变量的个数成为卡方分布的自由度 ...
在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。这可以通过绘制 样本数据直方图的方法来进行粗略的判断。如果需要进行比较准确的判断,则需要使用非参数检验的方法。其中总体分布的卡方检验(也记为χ2检验)就是一种比 较好的方法。 一、定义 总体 ...
在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。这可以通过绘制样本数据直方图的方法来进行粗略的判断。如果需要进行比较准确的判断,则需要使用非参数检验的方法。其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法 ...
通常,异常值的识别可以借助于图形法(如箱线图、正态分布图)和建模法(如线性回归、聚类算法、K近邻算法),在本期内容中,将分享两种图形法,在下一期将分享基于模型识别异常值的方法。 1、可以使用线箱法 图中的下四分位数指的是数据的25%分位点所对应的值(Q1);中位数即为数据的50%分 ...
什么是卡方检验 卡方检验是一种用途很广的计数资料的假设检验方法。它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。 它在分类资料统计推断中的应用,包括:两个率或两个构成比比 ...
与观测值差别越大,\(X^2\)越大 Contingency table(联连表) 介绍卡方检 ...
1.1 定义 设 X1,X2,......Xn相互独立, 都服从标准正态分布N(0,1), 则称随机变量χ2=X12+X22+......+Xn2所服从的分布为自由度为 n 的χ2分布.[1] 卡方分布的 期望E(χ2)=n,方差D(χ2)=2n。 卡方分布:若n个相互 ...
样本均值与样本方差 样本均值:$\overline{X}=\frac{\sum_{i=1}^k X_i}{k}$ 样本方差:$Var(X)=\frac{\sum_{i=1}^k |X_i-\overline{X}|}{k}$ 正态分布 $f(x|\mu,\sigma^2)=\frac ...