首先需要一段计算大指数幂并取模的代码: 可以知道: 而: 故: ...
对分子进行聚类分析,首先必须要考虑的是其描述符的问题,分子描述符通常是非常高维的,必须对其进行降维才好继续后面的分析,特别分子量特别大的时候。常用的降维手段有PCA,TSNE和UMAP.一说,TSNE用于可视化. 聚类的方法有许多,比如k means,层次聚类. 但是这两个一个需要定义k,一个需要定义阈值,这样需要试错法合理进行着两个量的设置,不是很方便. 因而,我选择使用HDBSCAN,一个基于 ...
2021-01-14 09:47 0 997 推荐指数:
首先需要一段计算大指数幂并取模的代码: 可以知道: 而: 故: ...
欧几里德算法 来自https://baike.baidu.com/item/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%B7%E7%AE%97%E6%B3%95/9002848?fr=aladdin ...
聚类算法有很多,常见的有几大类:划分聚类、层次聚类、基于密度的聚类。本篇内容包括k-means、层次聚类、DBSCAN 等聚类方法。 k-means 方法 初始k个聚类中心; 计算每个数据点到聚类中心的距离,重新分配每个数据点所属聚类; 计算新的聚簇集合的平均值作为新 ...
一、聚类算法简介 聚类是无监督学习的典型算法,不需要标记结果。试图探索和发现一定的模式,用于发现共同的群体,按照内在相似性将数据划分为多个类别使得内内相似性大,内间相似性小。有时候作为监督学习中稀疏特征的预处理(类似于降维,变成K类后,假设有6类,则每一行都可以表示为类似于000100 ...
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、简介 1.聚类算法的应用领域 用户画像,广告推荐,Data Segmentation,搜索引擎的流量推荐,恶意流量识别 基于位置信息的商业推送,新闻聚类,筛选排序 图像分割,降维,识别 ...
聚类算法 李鑫 2014210820 电子系 1、kmeans算法 1.1Kmeans算法理论基础 K均值算法能够使聚类域中所有样品到聚类中心距离平方和最小。其原理为:先取k个初始聚类中心,计算每个样品到这k个中心的距离,找出最小距离,把样品归入最近的聚类中心,修改中心点 ...
1. 与K-均值算法的比较 –K-均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活; –从算法角度看, ISODATA算法与K-均值算法相似,聚类中心都是通过样本均值的迭代运算来决定的; –ISODATA算法加入了一些试探步骤,并且可以结合 ...
1. 与K-均值算法的比较 –K-均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活; –从算法角度看, ISODATA算法与K-均值算法相似,聚类中心都是通过样本均值的迭代运算来决定的; –ISODATA算法加入了一些试探步骤,并且可以结合 ...