回归:连续值预测 逻辑回归:分类算法。–逻辑回归是干什么?定义:对定性变量的回归分析;定性:定量:之前的回归模型,处理的是因变量是数值型区间(负无穷到正无穷)变量,建立的模型描述的是因变量Y与自变量(X)之间的线性关系。 期望=期望参数与自变量的分别乘积和; 逻辑变换的公式:要记住 注 ...
目录 一 对数几率和对数几率回归 二 Sigmoid函数 三 极大似然法 四 梯度下降法 四 Python实现 一 对数几率和对数几率回归 在对数几率回归中,我们将样本的模型输出 y 定义为样本为正例的概率,将 frac y y 定义为几率 odds ,几率表示的是样本作为正例的相对可能性。将几率取对便可以得到对数几率 log odds,logit 。 logit log frac y y 而对 ...
2021-01-10 19:19 0 707 推荐指数:
回归:连续值预测 逻辑回归:分类算法。–逻辑回归是干什么?定义:对定性变量的回归分析;定性:定量:之前的回归模型,处理的是因变量是数值型区间(负无穷到正无穷)变量,建立的模型描述的是因变量Y与自变量(X)之间的线性关系。 期望=期望参数与自变量的分别乘积和; 逻辑变换的公式:要记住 注 ...
目录 1. 对数几率回归 1.1 求解 ω 和 b 2. 对数几率回归进行垃圾邮件分类 2.1 垃圾邮件分类 2.2 模型评估 混淆举证 精度 交叉验证精度 ...
对数几率回归对数几率回归(logistic regression),又称为逻辑回归,虽然它的名字是“回归”,但实际却是一种分类学习方法,那为什么“回归”?个人觉得是因为它跟线性回归的公式有点关联。 对数几率函数是sigmoid函数。 1、模型线性回归:z=w∗x+b z = w*x+ bz=w ...
Table of Contents 1 逻辑回归概述 1.1 Sigmoid函数 1.2 二项逻辑回归 1.3 对数几率理解 2 逻辑回归的参数优化及正则化 2.1 梯度下降法优化参数 ...
一 综述 由于逻辑回归和朴素贝叶斯分类器都采用了极大似然法进行参数估计,所以它们会被经常用来对比。(另一对经常做对比的是逻辑回归和SVM,因为它们都是通过建立一个超平面来实现分类的)本文主要介绍这两种分类器的相同点和不同点。 二.两者的不同点 1.两者比较明显的不同之处在于,逻辑回归 ...
http://nooverfit.com/wp/8-%E7%BB%88%E4%BA%8E%E6%90%9E%E6%B8%85%E6%A5%9A%E4%BB%80%E4%B9%88%E6%98%AF%E ...
Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 使用数据类型:数值型和标称型数据。 介绍逻辑 ...
首先得明确逻辑回归与线性回归不同,它是一种分类模型。而且是一种二分类模型。 首先我们需要知道sigmoid函数,其公式表达如下: 其函数曲线如下: sigmoid函数有什么性质呢? 1、关于(0,0.5) 对称 2、值域范围在(0,1)之间 3、单调递增 4、光滑 5、中间 ...