之前一直以为卷积是二维的操作,而到今天才发现卷积其实是在volume上的卷积。比如输入的数据是channels*height*width(3*10*10),我们定义一个核函数大小为3*3,则输出是8*8。实际核函数的参数量是3*3*channels,在本例子中就是3*3*3。 举例: 假设输入 ...
卷积神经网络 Convolutional Neural Networl, CNN 的两大核心思想: 局部连接 Local Connectivity 参数共享 Parameter Sharing 两者共同的一个关键作用就是减少模型的参数量,使运算更加简洁 高效,能够运行在超大规模数据集上。 局部连接与卷积 图像的局部相关性 对于一张输入图片,大小为 W times H ,如果使用全连接网络,生成一张 ...
2021-01-05 23:29 1 1316 推荐指数:
之前一直以为卷积是二维的操作,而到今天才发现卷积其实是在volume上的卷积。比如输入的数据是channels*height*width(3*10*10),我们定义一个核函数大小为3*3,则输出是8*8。实际核函数的参数量是3*3*channels,在本例子中就是3*3*3。 举例: 假设输入 ...
【参考知乎专栏】 ...
卷积 Convolution 卷积核也称为滤波器filter。滤波器大小为,其中为深度,和输入feature map的channel数相同。每一层的filter数量和输出channel数相同。输入的每个channel和对应深度的卷结核进行卷积,然后加和,组成输出的一个 ...
卷积和反卷积在CNN中经常被用到,想要彻底搞懂并不是那么容易。本文主要分三个部分来讲解卷积和反卷积,分别包括概念、工作过程、代码示例,其中代码实践部分主结合TensorFlow框架来进行实践。给大家介绍一个卷积过程的可视化工具,这个项目是github上面的一个开源项目 ...
卷积操作是使用一个二维卷积核在在批处理的图片中进行扫描,具体的操作是在每一张图片上采用合适的窗口大小在图片的每一个通道上进行扫描。 权衡因素:在不同的通道和不同的卷积核之间进行权衡 在tensorflow中的函数为例: conv2d: 任意的卷积核,能同时在不同的通道上面进行卷积操作 ...
卷积层尺寸的计算原理 输入矩阵格式:四个维度,依次为:样本数、图像高度、图像宽度、图像通道数 输出矩阵格式:与输出矩阵的维度顺序和含义 ...
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。 2. 我不确定的地方用了“应该”二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多。这个随便一篇博文都能解释 2. 语义理解。全连接网络结构处理 ...
转载自:https://blog.csdn.net/dcrmg/article/details/79652487 前几天在看CS231n中的CNN经典模型讲解时,花了一些时间才搞清楚卷积层输入输出的尺寸关系到底是什么样的,现总结如下。(可以参照我画的题图理解卷积层的运算) 卷积 ...