DecisionTreeRegressor 树模型参数: 1.criterion gini(基尼系数) or entropy(信息熵) 2.splitter best or random 前者是在所有特征中找最好的切分点 后者 ...
criterion: 特征选取标准。 默认:gini。 可选gini 基尼系数 或者entropy 信息增益 。 . 选择entropy,则是ID 或C . 算法。 ID 算法原理: a 计算训练集所有样本的信息熵。 b 计算每一特征分类后的信息增益。 c 选择信息增益最大的特征进行分类,得到子节点。 d 在还未被选择的特征中迭代b和c,直到无特征可分或信息增益已经无法达到要求的标准时,算法终止 ...
2021-01-03 11:24 0 362 推荐指数:
DecisionTreeRegressor 树模型参数: 1.criterion gini(基尼系数) or entropy(信息熵) 2.splitter best or random 前者是在所有特征中找最好的切分点 后者 ...
注:学习的网易云课堂的Python数据分析(机器学习)经典案例,每个案例会教你数据预处理、画图和模型优化。比有些简单调个包跑一下的课程负责任的多。 ...
决策树 与SVM类似,决策树在机器学习算法中是一个功能非常全面的算法,它可以执行分类与回归任务,甚至是多输出任务。决策树的算法非常强大,即使是一些复杂的问题,也可以良好地拟合复杂数据集。决策树同时也是随机森林的基础组件,随机森林在当前是最强大的机器学习算法之一。 在这章我们会先讨论如何使用 ...
回归 决策树也可以用于执行回归任务。我们首先用sk-learn的DecisionTreeRegressor类构造一颗回归决策树,并在一个带噪声的二次方数据集上进行训练,指定max_depth=2: 下图是这棵树的结果: 这棵树看起来与之前构造的分类树类似。主要 ...
在现实生活中,我们会遇到各种选择,不论是选择男女朋友,还是挑选水果,都是基于以往的经验来做判断。如果把判断背后的逻辑整理成一个结构图,你会发现它实际上是一个树状图,这就是我们今天要讲的决策树。 决策树的工作原理 决策树基本上就是把我们以前的经验总结出来。如果我们要出门打篮球,一般会根据“天气 ...
分类决策树的概念和算法比较好理解,并且这方面的资料也很多。但是对于回归决策树的资料却比较少,西瓜书上也只是提了一下,并没有做深入的介绍,不知道是不是因为回归树用的比较少。实际上网上常见的房价预测的案例就是一个应用回归树的很好的案例,所以我觉得至少有必要把回归树的概念以及算法弄清楚 ...
决策树的目标是从一组样本数据中,根据不同的特征和属性,建立一棵树形的分类结构。 决策树的学习本质上是从训练集中归纳出一组分类规则,得到与数据集矛盾较小的决策树,同时具有很好的泛化能力。决策树学习的损失函数通常是正则化的极大似然函数,通常采用启发式方法,近似求解这一最优化问题。 算法原理 ...
简介 基于树的学习算法被认为是最好的和最常用的监督学习方法之一。 基于树的方法赋予预测模型高精度,稳定性和易于解释的能力。 与线性模型不同,它们非常好地映射非线性关系。 它们适用于解决手头的任何问题(分类或回归)。决策树,随机森林,梯度增强等方法正在各种数据科学问题中广泛使用 ...