1.bow_net模型 embeding之后对数据进行unpad操作,切掉一部分数据。fluid.layers.sequence_unpad的作用是按照seq_len各个维度进行切分,如emb 为[3,128], unpad(sql_len=[60,80,100])操作后 切分后 ...
一 前言 如何以最低成本开发自定义深度学习模型 可以使用华为机器学习最近推出的自定义模型服务,该服务制作的模型大小可控,能够以最小成本运行到端侧。仅需要简单的接口调用就可以进行推断,主要支持图片分类和文本分类处理自己定义的特定场景分类。下面以图片分类为例让我们来看看自定义模型的训练和使用方法。 二 训练和使用 首先通过Android Studio的Marketplace安装HMS Toolkit, ...
2020-12-25 14:43 0 1195 推荐指数:
1.bow_net模型 embeding之后对数据进行unpad操作,切掉一部分数据。fluid.layers.sequence_unpad的作用是按照seq_len各个维度进行切分,如emb 为[3,128], unpad(sql_len=[60,80,100])操作后 切分后 ...
参数声明 V:词向量个数 D:词向量维度 C:分类个数 Co:卷积核个数 Ks:卷积核不同大小的列表,代码中为[3,4,5] 函数定义 定义计算CNN第i层神经元个数和第i+1层神经元个数的函数:def calculate_fan_in_and_fan_out(tensor ...
写在前面 文本分类是nlp中一个非常重要的任务,也是非常适合入坑nlp的第一个完整项目。虽然文本分类看似简单,但里面的门道好多好多,作者水平有限,只能将平时用到的方法和trick在此做个记录和分享,希望大家看过都能有所收获,享受编程的乐趣。 第一部分 模型 Bert模型是Google ...
摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验。 本文分享自华为云社区《Tensorflow+Opencv实现CNN自定义图像分类及与KNN图像分类对比》,作者 ...
文章导读: 1. Naive Bayes算法 2. Adaboost算法 3. Spark ML的使用 4. 自定义扩展Spark ML 1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial ...
) 2. fastText模型剖析 2.1 概念 FastText是一种典型的深度学习词向量的表 ...
将进行以下尝试: 用词级的 ngram 做 logistic 回归 用字符级的 ngram 做 logistic 回归 用词级的 ngram 和字符级的 ngram 做 Lo ...