梯度下降法 梯度下降法用来求解目标函数的极值。这个极值是给定模型给定数据之后在参数空间中搜索找到的。迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha。梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终 ...
优化理论 凸集 保持凸性的运算 线性锥不等式组 分离超平面和支撑超平面 超平面和半空间 欧几里得球 多面体 单纯形 优化理论 凸函数 共轭函数 拟凸函数 对数凹 对数凸函数 关于广义不等关系的凸性 优化理论 优化导论和无约束问题的最优条件 优化问题的类型 局部 全局和严格优化 梯度和Hessian 黑塞矩阵和方向导数 无约束问题的最优条件 优化理论 牛顿法 牛顿法求根 收敛速度 二次收敛性 修正 ...
2020-12-25 12:17 0 875 推荐指数:
梯度下降法 梯度下降法用来求解目标函数的极值。这个极值是给定模型给定数据之后在参数空间中搜索找到的。迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha。梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终 ...
、局部、全局和严格优化、梯度和Hessian 黑塞矩阵和方向导数、无约束问题的最优条件 优化理论0 ...
2 对梯度算法进行修改,使其运用在有约束条件下 2.1 投影法 2. ...
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法、BFGS 与 L-BFGS 算法。 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢(几乎不适用); 牛顿法是基于目标函数的二阶导数(Hesse 矩阵 ...
特点:具有超线性收敛速度,只需要计算梯度,避免计算二阶导数 算法步骤 \(step0:\) 给定初始值\(x_0\),容许误差\(\epsilon\) \(step1:\) 计算梯度\(g_k=\nabla f(x_k)\),if \(norm(g_k)<=\epsilon ...
概述 优化问题就是在给定限制条件下寻找目标函数\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的极值点。极值可以分为整体极值或局部极值,整体极值即函数的最大/最小值,局部极值就是函数在有限邻域内的最大/最小值。通常都希望能求得函数的整体 ...
最优化问题中常常需要求解目标函数的最大值或最小值,比如SVM支持向量机算法需要求解分类之间最短距离,神经网络中需要计算损失函数的最小值,分类树问题需要计算熵的最小或最大值等等。如果目标函数可求导常用梯度法,不能求导时一般选用模式搜索法。 一、梯度法求解最优问题 由数学分析知识可以知道 ...
我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。随着学习的深入,博主越来越发现最优化方法 ...