本人人工智能初学者,现在在学习TensorFlow2.0,对一些学习内容做一下笔记。笔记中,有些内容理解可能较为肤浅、有偏差等,各位在阅读时如有发现问题,请评论或者邮箱(右侧边栏有邮箱地址)提醒。 若有小伙伴需要笔记的可复制的html或ipynb格式文件,请评论区留下你们的邮箱,或者邮箱(右侧 ...
.caret, .dropup > .btn > .caret { border-top-color: #000 !important ...
来自书籍:TensorFlow深度学习 一、卷积神经网络 1、卷积层 卷积核:kernel 步长:stride 填充:padding padding = same:如步长=2,卷积核扫描结束后还剩 1 个元素,不够卷积核扫描了,这个时候就在后面补 1 个零,补完 ...
一、归一化简介 在对数据进行预处理时,经常要用到归一化方法。 在深度学习中,将数据归一化到一个特定的范围能够在反向传播中获得更好的收敛。如果不进行数据标准化,有些特征(值很大)将会对损失函数影响更大,使得其他值比较小的特征的重要性降低。因此 数据标准化可以使得每个特征的重要性更加均衡。 公式 ...
在TensorFlow的世界里,变量的定义和初始化是分开的,所有关于图变量的赋值和计算都要通过tf.Session的run来进行。想要将所有图变量进行集体初始化时应该使用tf.global_variables_initializer,或者单个初始化。如下: ...
相比simplernn多了三个门,记忆、输入、输出 记忆门(遗忘门,1为记住0为遗忘): 输入门: C: 输出门: 总: ...