SSD论文阅读(Wei Liu——【ECCV2016】SSD Single Shot MultiBox Detector) 目录 作者及相关链接 文章的选择原因 方法概括 方法细节 相关背景补充 实验结果 与相关文章的对比 总结 ...
SSD损失分为两部分,类别损失和回归框位置损失 其中,类别损失采用softmax损失,回顾框损失采用l smooth损失。 . softmax损失: SSD类别部分的网络输出维度为 batch size, , num classes ,并经过softmax激活函数,转化为概率。 softmax loss tf.reduce sum y true tf.math.log y pred ,axis 概 ...
2020-12-15 22:55 0 385 推荐指数:
SSD论文阅读(Wei Liu——【ECCV2016】SSD Single Shot MultiBox Detector) 目录 作者及相关链接 文章的选择原因 方法概括 方法细节 相关背景补充 实验结果 与相关文章的对比 总结 ...
1 SSD基础原理 1.1 SSD网络结构 SSD使用VGG-16-Atrous作为基础网络,其中黄色部分为在VGG-16基础网络上填加的特征提取层。SSD与yolo不同之处是除了在最终特征图上做目标检测之外,还在之前选取的5个特特征图上进行预测。 SSD图1为SSD网络进行一次预测 ...
slides 讲得是相当清楚了: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 配合中文翻译来看: https://www.cnblogs.com/cx2016/p/11385009.html ...
一些概念 True Predict True postive False postive ...
系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnblogs.com/kongweisi/p/10895055.html ...
SSD目标检测网络 使用SSD检测网络一段时间了,研究过代码,也踩过坑,算是有能力来总结下SSD目标检测网络了。 1. SSD300_Vgg16 最基础的SSD网络是以Vgg16作为backbone, 输入图片尺寸为300x300,这里以其为示例,详细剖析下SSD检测网络 ...
...
原 目标检测:SSD的数据增强算法 2018年07月13日 21:28:44 Alpha-AI 阅读数 3387 ...