转自:SevenBlue English Corpus word2vec Pre-trained vectors trained on part of Google N ...
注意:输入不是单词,而是要处理成 单词对应的索引,我们用个字典来存储 单词到索引的字典 再把 索引封装成 向量形式 就可以送进上面定义好的embedding了, from pretrained 加载预训练好的词向量 我们在进行具体nlp任务时,一般通过对应的Embedding层做词向量的处理,再拿词向量去进行下游的处理,比如分类啥的,但我们可以使用预训练好的词向量,比如使用gensim训练好的w ...
2020-12-09 16:40 1 2596 推荐指数:
转自:SevenBlue English Corpus word2vec Pre-trained vectors trained on part of Google N ...
使用预训练词向量和随机初始化词向量的差异还是挺大的,现在说一说我使用预训练词向量的流程。 一、构建本语料的词汇表,作为我的基础词汇 二、遍历该词汇表,从预训练词向量中提取出该词对应的词向量 三、初始化embeddings遍历,将数据赋值给tensor 样例代码: ...
使用小批量数据时,模型容易过拟合,所以需要对全量数据进行处理,我是用的是word2vec训练的词向量. 那么训练好对词向量如何加载呢? ...
虽然早就对NLP有一丢丢接触,但是最近真正对中文文本进行处理才深深感觉到自然语言处理的难度,主要是机器与人还是有很大差异的,毕竟人和人之间都是有差异的,要不然不会讲最难研究的人嘞 ~~~~~~~~~ ...
最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法 ...
腾讯词向量介绍 腾讯词向量主页:https://ai.tencent.com/ailab/nlp/zh/embedding.html 词向量下载地址:https://ai.tencent.com/ailab/nlp/zh/data ...
不涉及具体代码,只是记录一下自己的疑惑。 我们知道对于在pytorch中,我们通过构建一个词向量矩阵对象。这个时候对象矩阵是随机初始化的,然后我们的输入是单词的数值表达,也就是一些索引。那么我们会根据索引,赋予每个单词独一无二的一个词向量表达。在其后的神经网络训练过程中,每个单词对应独一无二 ...