引言 上一篇笔记中已经记录了,如何对一个无解的线性方程组\(Ax=b\)求近似解。在这里,我们先来回顾两个知识点: 如何判断一个线性方程组无解:如果拿上面那个方程组\(Ax=b\)举例,那就 ...
sum weights 可以通过参数设置。 如果不设置,那么值就是样本的个数。 指定每个样本的权重。 我突然想到基金预测,可以设置样本的权重。 真实涨幅越高,权重越小。 反之,权重越高。 因为如果预测偏低,那么loss 损失越大。 rmse : sum loss 和 score label score label loss std::sqrt sum loss sum weights l : 误 ...
2020-12-07 21:11 0 1347 推荐指数:
引言 上一篇笔记中已经记录了,如何对一个无解的线性方程组\(Ax=b\)求近似解。在这里,我们先来回顾两个知识点: 如何判断一个线性方程组无解:如果拿上面那个方程组\(Ax=b\)举例,那就 ...
的病人,你只能知道他3个月后到底是病危或者存活。所以线性回归并不适用这种场景。 logistic函数 ...
参考链接:http://baijiahao.baidu.com/s?id=1603857666277651546&wfr=spider&for=pc 1. 平方损失函数:MSE- L2 Loss $$MSE = \sum_{i = 1}^n (y_i - \hat{y_i ...
https://www.cnblogs.com/cxchanpin/p/7359672.html https://www.cnblogs.com/yangzsnews/p/7496639.html ...
逻辑回归可以用于处理二元分类问题,将输出值控制在[0,1]区间内,为确保输出值时钟若在0到1之间,采用sigmoid函数,其具有该特性,将线性回归训练得到的模型输出数据作z = x1*w1+x2*w2+...+xn*wn+b代入得到y,保证了y在0~1之间 逻辑回归中用到sigmoid函数 ...
1. 均方误差MSE 归一化的均方误差(NMSE) 2. 平均绝对误差MAE 3. Huber损失函数 4. Log-Cosh损失函数 5. 实例 6. tanh Python中直接调用np.tanh ...
1、目标函数 (1)mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean()(2)mean_absolute_error / mae 绝对值均差,公式为(|y_pred-y_true|).mean ...
前言 最近有遇到些同学找我讨论sigmoid训练多标签或者用在目标检测中的问题,我想写一些他们的东西,想到以前的博客里躺着这篇文章(2015年读研时机器学课的作业)感觉虽然不够严谨,但是很多地方还算直观,就先把它放过来吧。 说明: 本文只讨论Logistic回归的交叉熵,对Softmax回归 ...