参考:语义分割代码阅读---评价指标mIoU的计算 参考:(分割网络评价指标)dice系数和IOU之间的区别和联系 参考:【621】numpy.array 的逻辑运算 参考:numpy.bincount详解 参考:深度学习之语义分割中的度量标准 写在前面,关于计算 ...
. TP TN FP FN GroundTruth 预测结果 TP True Positives : 真的正样本 正样本 被正确分为 正样本 TN True Negatives : 真的负样本 负样本 被正确分为 负样本 FP False Positives : 假的正样本 负样本 被错误分为 正样本 FN False Negatives :假的负样本 正样本 被错误分为 负样本 . Preci ...
2020-12-07 09:40 0 1361 推荐指数:
参考:语义分割代码阅读---评价指标mIoU的计算 参考:(分割网络评价指标)dice系数和IOU之间的区别和联系 参考:【621】numpy.array 的逻辑运算 参考:numpy.bincount详解 参考:深度学习之语义分割中的度量标准 写在前面,关于计算 ...
此次我做的实验是二分类问题,输出precision,recall,accuracy,auc 输出混淆矩阵 全代码: 输出结果: ...
@ 目录 一、IOU 二、mAP 2.1 简介 2.2 计算方法 三、模型速度 一、IOU 交并比loU(intersection-over-union) 二、mAP 2.1 简介 mAP(mean average ...
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(False Positive)是负样本预测为正样本的数量,误报;即与Ground truth区域 ...
大雁与飞机 假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示: 假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。 现在做如下的定义 ...
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(False Positive)是负样本预测为正样本的数量,误报;即与Ground truth区域 ...
交并比IoU衡量的是两个区域的重叠程度,是两个区域重叠部分面积占二者总面积(重叠部分只计算一次)的比例。如下图,两个矩形框的IoU是交叉面积(中间图片红色部分)与合并面积(右图红色部分)面积之比。 Iou的定义 在目标检测任务中,如果我们模型输出的矩形框与我们人工标注的矩形框的IoU值大于 ...
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 ...