原文:K 均值算法-如何让数据自动分组

公号:码农充电站pro 主页:https: codeshellme.github.io 之前介绍到的一些机器学习算法都是监督学习算法。所谓监督学习,就是既有特征数据,又有目标数据。 而本篇文章要介绍的K 均值算法是一种无监督学习。 与分类算法相比,无监督学习算法又叫聚类算法,就是只有特征数据,没有目标数据,让算法自动从数据中 学习知识 ,将不同类别的数据聚集到相应的类别中。 ,K 均值算法 K ...

2020-12-04 09:57 0 826 推荐指数:

查看详情

无监督学习——K-均值聚类算法对未标注数据分组

无监督学习 和监督学习不同的是,在无监督学习中数据并没有标签(分类)。无监督学习需要通过算法找到这些数据内在的规律,将他们分类。(如下图中的数据,并没有标签,大概可以看出数据集可以分为三类,它就是一个无监督学习过程。) 无监督学习没有训练过程。 聚类 ...

Mon Jun 25 03:12:00 CST 2018 0 1748
机器学习实战笔记-利用K均值聚类算法对未标注数据分组

聚类是一种无监督的学习,它将相似的对象归到同一个簇中。它有点像全自动分类。聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好 簇识别给出聚类结果的含义。假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么。聚类与分类的最大不同在于,分类的目标 ...

Tue Nov 21 06:41:00 CST 2017 0 2105
K均值算法

所属的类别以及每个类的质心。由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-M ...

Wed Apr 15 04:11:00 CST 2020 0 1760
Python数据分析笔记:聚类算法K均值

我们之前接触的所有机器学习算法都有一个共同特点,那就是分类器会接受2个向量:一个是训练样本的特征向量X,一个是样本实际所属的类型向量Y。由于训练数据必须指定其真实分类结果,因此这种机器学习统称为有监督学习。 然而有时候,我们只有训练样本的特征,而对其类型一无所知。这种情况,我们只能 ...

Thu Nov 02 02:12:00 CST 2017 0 2974
K-均值聚类算法

K-均值聚类算法 聚类是一种无监督的学习算法,它将相似的数据归纳到同一簇中。K-均值是因为它可以按照k个不同的簇来分类,并且不同的簇中心采用簇中所含的均值计算而成。 K-均值算法 算法思想 K-均值是把数据集按照k个簇分类,其中k是用户给定的,其中每个簇是通过质心来计算簇的中心点 ...

Sat Aug 08 18:51:00 CST 2015 0 3286
用python实现K均值算法

1)选取初始数据中的k个对象作为初始的中心,每个对象代表一个聚类中心: 2) 3) 4) 2.鸢尾花花瓣长度做聚类分析并用散点图显示出来 3.用sklearm包 ...

Sun Oct 28 07:12:00 CST 2018 1 2552
K-均值聚类算法

一.k均值聚类算法 对于样本集。"k均值"算法就是针对聚类划分最小化平方误差: 其中是簇Ci的均值向量。从上述公式中可以看出,该公式刻画了簇内样本围绕簇均值向量的紧密程度,E值越小簇内样本的相似度越高。 工作流程: k-均值算法的描述如下: 接下 ...

Wed Jun 06 03:08:00 CST 2018 0 6839
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM