平面最近点对问题是指:在给出的同一个平面内的所有点的坐标,然后找出这些点中最近的两个点的距离. 方法1:穷举 1)算法描述:已知集合S中有n个点,一共可以组成n(n-1)/2对点对,蛮力法就是对这n(n-1)/2对点对逐对进行距离计算,通过循环求得点集中的最近点对2)算法 ...
大家好,我们今天来看一道非常非常经典的算法题 最近点对问题。 这个问题经常在各种面试当中出现,难度不低,很少有人能答上来。说实话,我也被问过,因为毫无准备,所以也没有答上来。是的,这道题有点神奇,没有准备的人往往答不上来。 题意 我们先来看下题意吧,题意很简单,在一个平面当中分布着n个点。现在我们知道这n个点的坐标,要求找出这n个点当中距离最近的两个点的间距。 我不确定这个问题是否出自于天文学, ...
2020-11-16 09:31 0 890 推荐指数:
平面最近点对问题是指:在给出的同一个平面内的所有点的坐标,然后找出这些点中最近的两个点的距离. 方法1:穷举 1)算法描述:已知集合S中有n个点,一共可以组成n(n-1)/2对点对,蛮力法就是对这n(n-1)/2对点对逐对进行距离计算,通过循环求得点集中的最近点对2)算法 ...
算法: 0:把所有的点按照横坐标排序 1:用一条竖直的线L将所有的点分成两等份 2:递归算出左半部分的最近两点距离d1,右半部分的最近两点距离d2,取d=min(d1,d2) 3:算出“一个在左半部分,另一个在右半部分”这样的点对的最短距离d3 ...
平面最近点对,是指给出平面上的n个点,寻找点对间的最小距离 首先可以对按照x为第一关键字排序,然后每次按照x进行分治,左边求出一个最短距离d1,右边也求出一个最短距离d2,那么取d=min(d1, d2) 然后只需考虑横跨左右两侧的点,不妨枚举左侧的点pi 那么很显然的是如果pi距离中间的点 ...
上篇文章介绍了分治法的概念和基本解题步骤,并附加了一个例题帮助大家了解分治法的基本思想,在这篇文章中,我将对分治法的另一个经典问题进行分析,希望我的文章能够将今天的主题解释清楚。接下来我将用三种不同的方法求解“平面最近点对”问题。 问题描述:在一个平面上随机分布着 n 个点,现 ...
前面两份代码其实并不是真的nlogn级别的,因为在合并时枚举的点的个数并不是6个点,真正的分治法只需枚举六个点就可以。所以前两份代码容易被卡时间!!!这是我在比赛时wa了21发得到的血的教训!!! ...
设p1=(x1,y1),p2=(x2,y2)...pn=(xn,yn)是平面n上n个点构成的集合S,最近对问你就是找出集合S中距离最近的点对。 分支策略: (1)划分:将集合S分成两个子集S1和S2,根据平衡子问题原则,每个子集中大约有n/2个点,设集合S的最近点对是pi和pj ...
问题描述参见:https://www.cnblogs.com/zyxStar/p/4591897.html 代码参考:http://blog.csdn.net/qq_28666193/article/details/53351482(原代码中有几处错误,我作了修改) 头文件部分 ...
最近在工作中碰到了这个问题:已知在平面坐标系内有N个点,求离开给定坐标距离最近的10个点。 团队的第一反应自然是按照两点间距离公式, 遍历N个已知点,然后排序获得前10个最短距离的结果。 只是,我从来不是一个规规矩矩的人。我一直推崇用人类直觉思维来编程,而不要被僵化的程序思想束缚。 传统 ...