原文链接 :http://tecdat.cn/?p=19542 时间序列预测问题是预测建模问题中的一种困难类型。 与回归预测建模不同,时间序列还增加了输入变量之间序列依赖的复杂性。 用于处理序列依赖性的强大神经网络称为 递归神经网络。长短期记忆网络 ...
原文链接:http: tecdat.cn p 在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测。 我将通过以下步骤: 探索性数据分析 EDA 问题定义 我们要解决什么 变量识别 我们拥有什么数据 单变量分析 了解数据集中的每个字段 多元分析 了解不同领域和目标之间的相互作用 缺失值处理 离群值处理 变量转换 预测建模 LSTM XGBoost 问题定义 我们在两个不同的表 ...
2020-11-13 12:38 0 765 推荐指数:
原文链接 :http://tecdat.cn/?p=19542 时间序列预测问题是预测建模问题中的一种困难类型。 与回归预测建模不同,时间序列还增加了输入变量之间序列依赖的复杂性。 用于处理序列依赖性的强大神经网络称为 递归神经网络。长短期记忆网络 ...
原文链接:http://tecdat.cn/?p=23544 原文出处:拓端数据部落公众号 下面是一个关于如何使用长短期记忆网络(LSTM)来拟合一个不稳定的时间序列的例子。 每年的降雨量数据可能是相当不稳定的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当 ...
原文链接:http://tecdat.cn/?p=12260 ARIMA模型是一种流行的且广泛使用的用于时间序列预测的统计方法。 ARIMA是首字母缩写词,代表自动回归移动平均。它是一类模型,可在时间序列数据中捕获一组不同的标准时间结构。 在本教程中,您将发现如何使用Python开发用于 ...
原文链接: http://tecdat.cn/?p=24092 原文出处:拓端数据部落公众号 前言 在量化金融中,我学习了各种时间序列分析技术以及如何使用它们。 通过发展我们的时间序列分析 (TSA) 方法组合,我们能够更好地了解已经发生的事情,并对未来做出更好、更有利的预测。示例应用 ...
原文链接:http://tecdat.cn/?p=20742 时间序列 被定义为一系列按时间顺序索引的数据点。时间顺序可以是每天,每月或每年。 以下是一个时间序列示例,该示例说明了从1949年到1960年每月航空公司的乘客数量。 时间序列预测 时间序列预测是使用统计模型 ...
本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。 我们使用以下数据 k=620n=nrow(elec)futu=(k+1):ny=electricite$Load[1:k]plot(y ...
原文链接:http://tecdat.cn/?p=22673 原文出处:拓端数据部落公众号 方法 Prophet异常检测使用了Prophet时间序列预测。基本的Prophet模型是一个可分解的单变量时间序列模型,结合了趋势、季节性和节假日效应。该模型预测还包括一个围绕估计的趋势部分 ...
原文链接:http://tecdat.cn/?p=19751 本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类。 要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据的各个时间步进行预测。 本示例使用日语 ...