简单阈值(全局阈值) 函数:threshold(src, thresh, maxval, type, dst=None),返回两个值retVal(阈值) 和 threshImg(处理后的图像) 函数中四个参数分别是原图像、阈值、最大值、阈值类型 阈值类型一般 ...
简单阈值(全局阈值) 函数:threshold(src, thresh, maxval, type, dst=None),返回两个值retVal(阈值) 和 threshImg(处理后的图像) 函数中四个参数分别是原图像、阈值、最大值、阈值类型 阈值类型一般 ...
图像二值化【图像阈值】简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。 python代码层面知识点: opencv中图像二值化 ...
定义:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。 一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于 ...
最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致 ...
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理、文本图片和验证码图片中字符的提取、车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等。 较为常用的图像二值化方法有:1)全局固定阈值;2)局部自适应阈值;3)OTSU等。 全局固定阈值很容易 ...
cv::threshold(GrayImg, Bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);//灰度图像二值化 CV_THRESH_OTSU是提取图像最佳阈值算法。该方法在类间方差最大的情况下是最佳的,就图像的灰度值而言,OTSU给出 ...
...
算法步骤 1、生成灰度直方图,并进行归一化,得到比例直方图。 2、根据比例直方图计算整幅图像的平均灰度$\mu_0$。 3、从灰度0迭代到灰度255,每次迭代计算背景(这里将小于当前迭代灰度的部分视为背景)占整幅图像的比例$\omega_1$;计算背景的平均灰度$\mu_1 ...