就是修改线性回归中的损失函数形式即可,岭回归以及Lasso回归就是这么做的。 岭回归与Las ...
前文我们讲到线性回归建模会有共线性的问题,岭回归和lasso算法都能一定程度上消除共线性问题。 岭回归 我们可以看到这次模型的收入和支出是正相关了。 lasso算法 看模型数据,我们得知并没有解决income为负相关的情况,而且并没有筛选变量,那么我们尝试取lambda. se . 的值 看结果,可知把一些变量删去了,消除共线性的问题,接下来我们看看lambda. se的值 这次结果只留了一个变量 ...
2020-11-04 11:29 0 3206 推荐指数:
就是修改线性回归中的损失函数形式即可,岭回归以及Lasso回归就是这么做的。 岭回归与Las ...
保证了计算的可行性。方法本文介绍了常用的惩罚logistic算法如LASSO、岭回归。 方法 我们之 ...
线性回归模型的短板 岭回归模型 λ值的确定--交叉验证法 岭回归模型应⽤ 寻找最佳的Lambda值 基于最佳的Lambda值建模 Lasso回归模型 LASSO回归模型的交叉验证 Lasso回归模型应用 ...
由于计算一般线性回归的时候,其计算方法是: p = (X’* X)**(-1) * X’ * y 很多时候 矩阵(X’* X)是不可逆的,所以回归系数p也就无法求解, 需要转换思路和方法求解:加2范数的最小二乘拟合(岭回归) 岭回归模型的系数表达式: p = (X’ * X ...
回归和分类是机器学习算法所要解决的两个主要问题。分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题。但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出 ...
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...
原文链接:http://tecdat.cn/?p=21602 正则化(regularization) 正则化路径是在正则化参数lambda的值网格上计算套索LASSO或弹性网路惩罚的正则化路径。该算法速度快,可以利用输入矩阵x中的稀疏性,拟合线性、logistic和多项式 ...
线性回归——最小二乘 线性回归(linear regression),就是用线性函数 f(x)=w⊤x+b">f(x)=w⊤x+bf(x)=w⊤x+b 去拟合一组数据 D={(x1,y1),(x2,y2),...,(xn,yn)}">D={(x1,y1),(x2,y2 ...