一、定义 数据分箱就是将连续变量离散化。 二、意义 • 离散特征可变性强,易于模型的快速迭代; • 稀疏向量运算速度快,方便存储; • 变量离散化后对异常数据有很强的鲁棒性; • 特征离散以后,模型会更加稳定 ...
本文代码均已在 MATLAB R b 测试通过,如有错误,欢迎指正。 目录 一 分箱平滑的原理 二 Matlab代码实现 .等深分箱 代码运行结果 .等宽分箱 代码运行结果 一 分箱平滑的原理 分箱方法 在分箱前,一定要先排序数据,再将它们分到等深 等宽 的箱中。 常见的有两种分箱方法:等深分箱和等宽分箱。 等深分箱:按记录数进行分箱,每箱具有相同的记录数,每箱的记录数称为箱的权重,也称箱子的深度 ...
2020-10-30 14:18 0 1877 推荐指数:
一、定义 数据分箱就是将连续变量离散化。 二、意义 • 离散特征可变性强,易于模型的快速迭代; • 稀疏向量运算速度快,方便存储; • 变量离散化后对异常数据有很强的鲁棒性; • 特征离散以后,模型会更加稳定 ...
1.原始数据存在的几个问题:不一致;重复;含噪声;维度高。 2.数据预处理包含数据清洗、数据集成、数据变换和数据归约几种方法。 3.数据挖掘中使用的数据的原则 应该是从原始数据中选取合适的属性作为数据挖掘属性,这个选取过程应参考的原则是:尽可能赋予属性名和属性值明确 ...
变量的延申和筛选-连续变量离散化-特征筛选 WOE编码(最优分箱) WOE一般在0.1~3之间波动,IV值做得特征筛选的操作 一般保留>0.03的特征 IV值体现的时X和Y之间的显著性进行筛选 1.逐列分箱并获得IV值 也可以所有特征 ...
建模数据的预处理的过程中,变量分箱(即变量离散化)往往是较为核心一环。变量分箱的优劣往往会影响模型评分效果. 一,数据分箱的重要性 1.对异常数据有比较好的鲁棒性. 2.在逻辑回归模型中,单个变量分箱之后每个箱有自己独立的权重,相当于给模型加入了非线性的能力,能够提升模型的表达能力 ...
1.离散的优势: (1)离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是 ...
在数据预处理的过程当中往往需要将多个数据集合中的数据整合到一个数据仓库中,即:需要对数据库进行集成。与此同时,为了更好地对数据仓库中的数据进行挖掘,对数据仓库中的数据进行变换也在所难免。本文主要针对数据集成以及数据变化两个问题展开论述。 数据集成在将多个数据库整合为一个数据库过程中存在需要着重 ...
原文:http://www.itongji.cn/article/0Q926052013.html 在 数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行 数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量 ...
一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。比如在建立申请评分卡模型时用logsitic作为基模型就需要对连续变量进行离散化,离散化通常采用分箱法。 分箱的重要性及其优势 离散特征的增加和减少都很容易,易于模型的快速迭代; 稀疏向量 ...