写在前面 文本分类是nlp中一个非常重要的任务,也是非常适合入坑nlp的第一个完整项目。虽然文本分类看似简单,但里面的门道好多好多,作者水平有限,只能将平时用到的方法和trick在此做个记录和分享,希望大家看过都能有所收获,享受编程的乐趣。 第一部分 模型 Bert模型是Google ...
默认bert是ckpt,在进行后期优化和部署时,savedmodel方式更加友好写。 train完成后,调用如下函数: estimator:estimator Estimator model fn model fn,params ,config run config serving dir:存储目录 seq length:样本长度 is tpu estimator: tpu标志位 ...
2020-10-28 18:26 1 897 推荐指数:
写在前面 文本分类是nlp中一个非常重要的任务,也是非常适合入坑nlp的第一个完整项目。虽然文本分类看似简单,但里面的门道好多好多,作者水平有限,只能将平时用到的方法和trick在此做个记录和分享,希望大家看过都能有所收获,享受编程的乐趣。 第一部分 模型 Bert模型是Google ...
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义。本次试验将介绍 BERT 的模型结构,以及将其应用于文本分类实践。 知识点 语言模型和词向量 BERT 结构详解 BERT 文本分类 ...
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
Pytorch之Bert文本分类(一) ...
训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 tex ...
本篇文章,使用pytorch框架 微调bert bert官方文档:https://huggingface.co/transformers/model_doc/bert.html bert文件:https://github.com/huggingface/transformers 这里有一篇 ...
1.bow_net模型 embeding之后对数据进行unpad操作,切掉一部分数据。fluid.layers.sequence_unpad的作用是按照seq_len各个维度进行切分,如emb 为[3,128], unpad(sql_len=[60,80,100])操作后 切分后 ...