原文:语义分割单通道和多通道输出交叉熵损失函数的计算问题

摘要 本文验证了语义分割任务下,单通道输出和多通道输出时,使用交叉熵计算损失值的细节问题。对比验证了使用简单的函数和自带损失函数的结果,通过验证,进一步加强了对交叉熵的理解。 交叉熵损失函数 交叉熵损失函数的原理和推导过程,可以参考这篇博文,交叉熵的计算公式如下: CE p,q p log q 其中 q 为预测的概率, q , , p 为标签, p , 。 而交叉熵损失函数则是利用上式计算每一个分 ...

2020-10-27 19:55 0 1320 推荐指数:

查看详情

多通道(Multichannel)单通道(singlechannel)图像概念梳理

在做机器视觉时,常常要将一个多通道图像分离成几个单通道图像或者将几个单通道图像合成一个多通道图像,以方便图像处理,但是。写这篇博客,是为加深对这两个概念的理解,下面会给出部分OpenCV对单通道多通道图像间相互转化的程序代码,并对运行结果进行观察分析 ...

Fri Nov 04 07:05:00 CST 2016 0 6226
交叉损失函数

交叉损失函数的概念和理解 觉得有用的话,欢迎一起讨论相互学习~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定义 ...

Sat Aug 26 23:15:00 CST 2017 2 8431
损失函数交叉

损失函数交叉 交叉用于比较两个不同概率模型之间的距离。即先把模型转换成这个数值,然后通过数值去定量的比较两个模型之间的差异。 信息量 信息量用来衡量事件的不确定性,即该事件从不确定转为确定时的难度有多大。 定义信息量的函数为: \[f(x):=\text{信息量 ...

Tue Aug 03 05:26:00 CST 2021 0 114
交叉损失函数

交叉损失函数 的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...

Fri Apr 28 23:39:00 CST 2017 1 6494
交叉损失函数

1. Cross entropy 交叉损失函数用于二分类损失函数计算,其公式为: 其中y为真值,y'为估计值.当真值y为1时, 函数图形: 可见此时y'越接近1损失函数的值越小,越接近0损失函数的值越大. 当真值y为0时, 函数图形: 可见此时y'越接近0损失 ...

Mon Jul 29 01:26:00 CST 2019 0 5788
交叉损失函数

交叉损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉形式上的不同呢? 两种形式 这两个都是交叉损失函数,但是看起来长的却有天壤之别。为什么同是交叉损失函数,长的却不一样? 因为这两个交叉损失函数对应不同的最后一层的输出:第一个对应的最后一层 ...

Mon Dec 24 06:27:00 CST 2018 0 11393
交叉--损失函数

【简介】   交叉(Cross Entropy)是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。语言模型的性能通常用交叉和复杂度(perplexity)来衡量。交叉的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义 ...

Wed Apr 18 17:31:00 CST 2018 2 16776
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM