Good Semi-supervised Learning That Requires a Bad GAN 恢复博客更新,最近没那么忙了,记录一下学习。 Intro 本文是一篇稍微偏理论的半监督学习的文章,通过证明一个能够生成非目标分布的、低样本密度的样本的生成器,对半监督学习的效果有很大 ...
Virtual Adversarial Training: a Regularization Method for Supervised and Semi supervised Learning 简介 本文是 年半监督学习的一篇文章,受对抗训练的启发,将对抗训练的范式用于提升半监督学习,并且取得了非常好的效果。不同于最近一直比较火的对比学习,这些稍微 传统 一点的方法我觉得还是有一定研究价值的,对 ...
2020-10-26 02:31 0 468 推荐指数:
Good Semi-supervised Learning That Requires a Bad GAN 恢复博客更新,最近没那么忙了,记录一下学习。 Intro 本文是一篇稍微偏理论的半监督学习的文章,通过证明一个能够生成非目标分布的、低样本密度的样本的生成器,对半监督学习的效果有很大 ...
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类别标签。我们在一个数据集上训练一个产生式模型 G 以及 一个判别器 D,输入 ...
通过对抗训练实现半监督的异常检测 Abstract 异常检测在计算机视觉中是一个经典的问题,即从异常中确定正常,但是由于其他 ...
论文笔记:Adaptive Consistency Regularization for Semi-Supervised Transfer Learning Paper: Adaptive Consistency Regularization for Semi-Supervised ...
模型搞到这时候,就是要以不断提升泛化力和鲁棒性,当今两个主流的方法是(1)知识蒸馏;(2)对抗学习 本节主要说对抗训练,它是一种能够有效提高模型鲁棒性和泛化能力的训练手段,基本原理:在 ...
Laine, Samuli, and Timo Aila. "Temporal Ensembling for Semi-Supervised Learning." arXiv preprint arXiv:1610.02242 (2016). 这篇论文投在ICLR 2017上:https ...
摘要:在本文中,我们提出了一种新的基于交叉一致性的语义分割半监督方法。 一致性训练已被证明是一种强大的半监督学习框架,用于在集群假设下利用未标记的数据,其中决策边界应位于低密度区域。 在这项工作中,我 ...
2019 CVPR的文章,使用时序卷积和半监督训练的3D人体姿态估计 论文链接:https://arxiv.org/abs/1811.11742 github:https://github.com/facebookresearch/VideoPose3D 已经有前辈对这篇文章做过理解 ...