算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域)、灰度图直方图、初始种子图、区域生长结果图。另外,不管时初始种子选择还是区域生长,阈值选择很重要。 ...
由于一些原因,不能放原图,分割结果如下图所示 参考文章: .https: blog.csdn.net shenziheng article details 作者:舟华 出处:https: www.cnblogs.com xfzh 本文以学习,分享,研究交流为主,欢迎转载,请标明作者出处 ...
2020-10-23 13:04 0 1164 推荐指数:
算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域)、灰度图直方图、初始种子图、区域生长结果图。另外,不管时初始种子选择还是区域生长,阈值选择很重要。 ...
1. 基于区域生长算法的图像分割原理 数字图像分割算法一般是基于灰度值的两个基本特性之一:不连续性和相似性。前一种性质的应用途径是基于图像灰度的不连续变化分割图像,比如图像的边缘。第二种性质的主要应用途径是依据实现指定的准则将图像分割为相似的区域。区域生长算法就是基于图像的第二种性质,即图像 ...
区域生长算法是一种影像分割技术。基本思想将以一定判别依据,将具有相似准则的像素合并起来构成区域。主要步骤是对每个需要分割的区域找出一个种子像素作为生长起点(通俗一点就是找一个像素来作为参考,用于判断其他像素与参考像素之间是否具有联系),然后根据一定的判别准则,将种子像素周围相似的像素进行判别 ...
一、理论概念 区域生长是按照事先定义的生长准则将一个像素或者子区域逐步聚合成一个完整独立的连通区域过程。对于图像感兴趣目标区域R,z为区域R上事先发现的种子点,按照规定的生长准则逐步将与种子点z一定邻域内符合相似性判据的像素合并成一个种子群以备下一阶段的生长,这样不断的进行循环生长直到满足 ...
// 注:本内容为作者原创,禁止在其他网站复述内容以及用于商业盈利,如需引用,请标明出处:https://www.cnblogs.com/lv-anchoret/ 今天我们来介绍用C++算法如何来实现图像分割算法中的区域生长算法 区域生长的简介 我们解决的是对一整张图像所有内容进行 ...
基于CC写的插件,利用PCL中算法实现: 具体实现参考RegionGrowing类: 算法实现的关键多了一步种子点选取的过程,需要根据某一种属性排序。 区域生长的主要流程: ...
区域生长算法 2014年9月19日 17:01:44 大道理一摆: (以下说明转载,感觉写的很好) 历史:区域生长是一种古老的图像分割方法,最早的区域生长图像分割方法是由Levine等人提出的。该方法一般有两种方式,一种是先给定图像中要分割的目标物体内的一个小块或者说种子区域 ...
function ret=growseed() %=====区域生长算法======== %input :二值图像数据 %output:边界点二值图像数据 global I;global M; global N;global Y;global T;global newy;global ...