原文:强化学习基础系列(一):强化学习基本定义

x 强化学习简介 强化学习 Reinforcement Learning, RL 是机器学习 Machine Learning, ML 的三大分支之一。在一个强化学习问题中, 有一个决策者, 我们通常称之为智能体 agent , 它所交互的区域叫做环境 environment, env , 它所处的当前环境称为状态 state , agent观察到的这个环境状态称为 observation,ob ...

2020-10-23 02:06 0 421 推荐指数:

查看详情

强化学习一:模型基础

本文介绍强化学习的基本概念及建模方法 什么是强化学习 强化学习主要解决贯续决策问题,强调一个智能体在不断的跟环境交互的过程中通过优化策略从而在整个交互过程中获得最多的回报。 图中的大脑代表智能体agent,智能体根据当前环境\(s_t\) 选择一个动作\(a_t\)执行,这个\(a_t ...

Thu Sep 26 06:47:00 CST 2019 0 363
强化学习(一)模型基础

    从今天开始整理强化学习领域的知识,主要参考的资料是Sutton的强化学习书和UCL强化学习的课程。这个系列大概准备写10到20篇,希望写完后自己的强化学习碎片化知识可以得到融会贯通,也希望可以帮到更多的人,毕竟目前系统的讲解强化学习的中文资料不太多。     第一篇会从强化学习的基本概念 ...

Mon Jul 30 02:53:00 CST 2018 48 54073
强化学习

机器学习分类: 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益 强化学习基础概念:Agent :主体,与环境交互的对象,动作的行使者Environment : 环境, 通常被规范为马尔科夫决策过程(MDP)State : 环境状态的集合Action ...

Wed Apr 18 06:20:00 CST 2018 0 924
强化学习总结

强化学习总结 强化学习的故事 强化学习学习一个最优策略(policy),可以让本体(agent)在特定环境(environment)中,根据当前的状态(state),做出行动(action),从而获得最大回报(G or return)。 有限马尔卡夫决策过程 马尔卡夫决策过程理论定义 ...

Fri Mar 31 07:34:00 CST 2017 6 17833
强化学习——入门

强化学习强化学习作为一门灵感来源于心理学中的行为主义理论的学科,其内容涉及 概率论、统计学、逼近论、凸分析、计算复杂性理论、运筹学 等多学科知识,难度之大,门槛之高,导致其发展速度特别缓慢。 一种解释: 人的一生其实都是不断在强化学习,当你有个动作(action)在某个状态 ...

Thu Sep 12 19:37:00 CST 2019 1 467
强化学习(MATLAB)

1. 定义 机器学习算法可以分为3种:有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning)。强化学习(Reinforcement Learning, RL),又称再励学习、评价学习 ...

Wed Mar 25 00:51:00 CST 2020 1 9767
什么是强化学习

Reinforcement learning 是机器学习里面的一个分支,特别善於控制一只能够在某个环境下 自主行动 的个体 (autonomous agent),透过和 环境 之间的互动,例如 sensory perception 和 rewards,而不断改进它的 行为 。 听到强化学习 ...

Mon May 18 03:36:00 CST 2015 1 11166
强化学习杂谈

强化学习从入门到放弃 目录 强化学习从入门到放弃 杂谈 MDP MP MRP Bellman Equation MDP ...

Fri Jan 03 05:37:00 CST 2020 0 233
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM