最近在看《Python数据分析与挖掘实战》和在上《模式识别》这门课的时候遇到了---------------主成分分析这个东西所以就学习了查询了一下,学习了一下 参考博客: http://blog.csdn.net/xyilu/article/details/9569063 主成分分析 ...
文末有赠书福利 在数据挖掘项目中,经常会遇到的情况是有很多特征可以用,这是一件好事,但是有的时候数据中存在很多冗余情况,也就是说数据存在相关性或者共线性。在这种情况下对于分析带来了很多麻烦。不必要的特征太多会造成模型的过于复杂,共线性相关性会造成模型的不稳定,即数据微小的变化会造成模型结果很大的变化。主成分分析是解决这种问题的一个工具。 一 概述 主成分分析简称PCA,PCA是一个很好的预处理工 ...
2020-10-22 16:44 0 834 推荐指数:
最近在看《Python数据分析与挖掘实战》和在上《模式识别》这门课的时候遇到了---------------主成分分析这个东西所以就学习了查询了一下,学习了一下 参考博客: http://blog.csdn.net/xyilu/article/details/9569063 主成分分析 ...
基础概念 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 ###原理: 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们 ...
1.PCA 使用场景:主成分分析是一种数据降维,可以将大量的相关变量转换成一组很少的不相关的变量,这些无关变量称为主成分 步骤: 数据预处理(保证数据中没有缺失值) 选择因子模型(判断是PCA还是EFA) 判断要选择的主成分/因子数目 选择主成分 旋转主成分 ...
数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入> > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收入利润率 ...
主成分分析(principal components analysis, PCA) 是一种分析、简化数据集的技术。它把原始数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数 ...
https://www.cnblogs.com/jin-liang/p/9064020.html 数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入 > > ls(data) #ls()函数列出所有变量 ...
作者:落痕的寒假原文:https://blog.csdn.net/LuohenYJ/article/details/97950522 声明:本文章经原作者同意后授权转载。 主成分分析 Principal Component Methods(PCA)允许 ...
习题: 9.1用主成分方法探讨城市工业主体结构。下表是某事工业部门十三个行业,分别是冶金(1)、电力(2)、煤炭(3)、化学(4)、机械(5)、建材(6)、森工(7)、食品(8)、纺织(9)、缝纫(10),皮革(11)、造纸(12)和文教艺术用品(13),八个指标分别是年末固定资产净值X1(万元 ...