这里的dim=0其实就是张量的0轴,dim=1就是张量的1轴。 \(J_\alpha(x)=\) ...
import torch.nn as nn m nn.Softmax dim input torch.randn , , print input print m input input: tensor . , . , . , . , . , . , . , . , . , . , . , . dim : tensor . , . , . , . , . , . , . , . , . , . , ...
2020-10-20 21:10 0 856 推荐指数:
这里的dim=0其实就是张量的0轴,dim=1就是张量的1轴。 \(J_\alpha(x)=\) ...
总结: torch.function(x, dim) 1.if 不传: 依照默认参数决定 2.if dim >=0 and dim <= x.dim()-1: 0是沿最粗数据粒度的方向进行操作,x.dim()-1是按最细粒度的方向。 3.if dim <0: dim的最小 ...
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/functional/#_1 或: 对n维输入张量运用Softmax函数,将张量的每个元素缩放到(0,1)区间 ...
在阅读使用 pytorch 实现的代码时,笔者会遇到需要对某一维数据进行求和( sum )或 softmax 的操作。在 pytorch 中,上述两个方法均带有一个指定维度的 dim 参数,这里记录下 dim 参数的用法。 torch.sum 在 pytorch 中,提供 ...
主要是参考这里,写的很好PyTorch 入门实战(四)——利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出通道数 kernel_size:滤波器(卷积核)大小,宽和高相 ...
学习pytorch路程之动手学深度学习-3.4-3.7 置信度、置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 交叉熵参考博客:https://www.cnblogs.com/kyrieng/p ...
nn.Linear() PyTorch的 nn.Linear() 是用于设置网络中的全连接层的,需要注意在二维图像处理的任务中,全连接层的输入与输出一般都设置为二维张量,形状通常为[batch_size, size],不同于卷积层要求输入输出是四维张量。其用法与形参说明 ...
本文将介绍: torch.nn包 定义一个简单的nn架构 定义优化器、损失函数 梯度的反向传播 将使用LeNet-5架构进行说明 一、torch.nn包 torch.nn包来构建网络; torch.nn.Module类作为自定义类的基类 ...