利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1、训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词后的train_jieba.txt和test_jieba.txt,看一下 ...
利用TfidfVectorizer进行中文文本分类 数据集是复旦中文语料 利用RNN进行中文文本分类 数据集是复旦中文语料 上一节我们利用了RNN GRU 对中文文本进行了分类,本节我们将继续使用CNN对中文文本进行分类。 数据处理还是没有变,只是换了个模型,代码如下: 结果如下: 进行测试,测试结果如下: 至此使用传统的TF IDF 朴素贝叶斯 RNN LSTM GRU 和CNN从数据的处理到模 ...
2020-10-19 20:56 0 1005 推荐指数:
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1、训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词后的train_jieba.txt和test_jieba.txt,看一下 ...
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 利用CNN进行中文文本分类(数据集是复旦中文语料) 和之前介绍的不同,重构了些代码,为了使整个流程更加清楚,我们要重新对数据进行预处理。 阅读 ...
1、对语料进行分析 基本目录如下: 其中train存放的是训练集,answer存放的是测试集,具体看下train中的文件: 下面有20个文件夹,对应着20个类,我们继续看下其中的文件,以C3-Art为例: 每一篇都对应着一个txt文件,编码格式是gb18030.utf8文件夹 ...
) 利用CNN进行中文文本分类(数据集是复旦中文语料) 利用transformer进行中文文 ...
深度学习近一段时间以来在图像处理和NLP任务上都取得了不俗的成绩。通常,图像处理的任务是借助CNN来完成的,其特有的卷积、池化结构能够提取图像中各种不同程度的纹理、结构,并最终结合全连接网络实现信息的汇总和输出。RNN由于其记忆功能为处理NLP中的上下文提供了途径。 在短文本分析任务中 ...
Pytorch使用Google BERT模型进行中文文本分类 ...
1 应用场景 使用朴素贝叶斯对未知类型的小说(文本文档)进行类型分类。训练集有三种类型的小说,分别是玄幻、科幻和都市。在本文中,准备的数据从某小说网站下载.txt文件,采用GB2312编码。每种类型有三部小说。测试数据用同样的方法得到的,链接为http://www.55x.cn/html ...
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结。 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo。 文本分类是自然语言处理 ...