[阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 目录 [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 ...
阿里DIN 深度兴趣网络源码分析 之 如何建模用户序列 目录 阿里DIN 深度兴趣网络源码分析 之 如何建模用户序列 x 摘要 x DIN 需要什么数据 x 如何产生数据 . 基础数据 . 处理数据 . . 生成元数据 . . 构建样本列表 . . 分离样本 . . 生成行为序列 . . 分成训练集和测试集 . . 生成数据字典 x 如何使用数据 . 训练数据 . 迭代读入 . . 初始化 . ...
2020-10-20 19:08 0 538 推荐指数:
[阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 目录 [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 ...
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 ...
一、背景 对于阿里巴巴的用户行为数据:有两个指标对广告CTR预测准确率有重大影响。 1、多样性(Diversity):一个用户可以对很多不同品类的东西感兴趣; 2、局部兴趣(Local activation):对于用户兴趣的多样性,只有一部分历史数据会影响到当次推荐的物品是否被点击,并非所有 ...
[阿里DIEN] 深度兴趣进化网络源码分析 之 Keras版本 目录 [阿里DIEN] 深度兴趣进化网络源码分析 之 Keras版本 0x00 摘要 0x01 背景 1.1 代码进化 1.2 Deepctr ...
看看阿里如何在淘宝做推荐,实现“一人千物千面”的用户多样化兴趣推荐,首先总结下DIN、DIEN、DSIN: 传统深度学习在推荐就是稀疏到embedding编码,变成稠密向量,喂给NN DIN引入attention机制,捕获候选商品和用户浏览过的商品之间的关系(兴趣) DIEN ...
参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不同行为的注意力是不一样的,“相关”的行为历史看重一些,“不相关”的历史甚至可以忽略 ...
深度学习在推荐系统、CTR预估领域已经有了广泛应用,如wide&deep、deepFM模型等,今天介绍一下由阿里算法团队提出的深度兴趣网络DIN和DIEN两种模型 paper DIN:https://arxiv.org/abs/1706.06978 DIEN:https ...
论文地址:Deep Interest Network for Click-Through Rate ... 这篇论文来自阿里妈妈的精准定向检索及基础算法团队。文章提出的Deep Interest Network (DIN),实现了推荐系统CTR预估模型中,对用户历史行为数据的进一步挖掘 ...