1、解释模型 解释复杂模型在机器学习中至关重要。 模型可解释性通过分析模型真正认为的重要内容来帮助调试模型。 在PyCaret中解释模型就像编写interpret_model一样简单。 该函数将训练有素的模型对象和图的类型作为字符串。 解释是基于SHAP(SHapley Additive ...
集成模型 组装训练好的模型就像编写ensemble model一样简单。它仅采用一个强制性参数,即经过训练的模型对象。此函数返回一个表,该表具有k倍的通用评估指标的交叉验证分数以及训练有素的模型对象。使用的评估指标是:分类:准确性,AUC,召回率,精度,F ,Kappa,MCC回归:MAE,MSE,RMSE,R ,RMSLE,MAPE可以使用ensemble model函数中的fold参数定义折 ...
2020-10-11 20:25 0 576 推荐指数:
1、解释模型 解释复杂模型在机器学习中至关重要。 模型可解释性通过分析模型真正认为的重要内容来帮助调试模型。 在PyCaret中解释模型就像编写interpret_model一样简单。 该函数将训练有素的模型对象和图的类型作为字符串。 解释是基于SHAP(SHapley Additive ...
作者:吴晓军 原文:https://zhuanlan.zhihu.com/p/27424282 模型验证(Validation) 在Test Data的标签未知的情况下,我们需要自己构造测试数据来验证模型的泛化能力,因此把Train Data分割成Train Set和Valid Set ...
1、比较模型 这是我们建议在任何受监管实验的工作流程中的第一步。此功能使用默认的超参数训练模型库中的所有模型,并使用交叉验证评估性能指标。它返回经过训练的模型对象。使用的评估指标是: 分类:准确性,AUC,召回率,精度,F1,Kappa,MCC回归:MAE,MSE,RMSE,R2,RMSLE ...
0 - 思路 Stacking是许多集成方法的综合。其主要思路如下图所示,通过训练数据训练多个base learners(the first-level learners),这些learners的输出作为下一阶段meta-learners(the second-level learners ...
Bagging需要不同的/独立的(diverse/independent)基础模型,因此太过稳定的模型不适合 ...
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3974417.html 本文主要介绍如何在Storm编程实现与Kafka的集成 一、实现模型 数据流程: 1、Kafka Producter生成topic1主题的消息 ...
作者|LAKSHAY ARORA 编译|VK 来源|Analytics Vidhya 概述 PyCaret是一个超级有用的Python库,用于在短时间内执行多个机器学习任务 学习如何依赖PyCaret在几行代码中构建复杂的机器学习模型 介绍 我建立的第一个机器学习模型 ...