目录 基础pythonAPI概览 计算动作(Computing Actions) 获取策略状态(Accessing Policy State) 获取模型状态(Accessing Model State) 例子:预处理喂给model的观测值 例子:查询一个 ...
目录 定制训练流程 Custom Training Workflows 全局协调 Global Coordination 回调函数和自定义准则 Callbacks and Custom Metrics 可视化自定义的度量 Visualizing Custom Metrics 自定义探索行为 Customizing Exploration Behavior 训练过程中自定义评估 Customized ...
2020-10-06 17:29 0 506 推荐指数:
目录 基础pythonAPI概览 计算动作(Computing Actions) 获取策略状态(Accessing Policy State) 获取模型状态(Accessing Model State) 例子:预处理喂给model的观测值 例子:查询一个 ...
目录 开场(Getting Started) 评估训练策略(Evaluating Trained Policies) 指定参数(Specifying Parameters) 指 ...
目录 什么是Ray 什么是RLlib 简单的代码风格 Policies Sample Batches Training Application Support Customization 参考资料 ...
作者|Christian Hubbs 编译|VK 来源|Towards Data Science Ray不仅仅是一个用于多处理的库,Ray的真正力量来自于RLlib和Tune库,它们利用了强化学习的这种能力。它使你能够将训练扩展到大型分布式服务器,或者利用并行化特性来更有效地使用 ...
一、推荐中如何定义强化学习的几个元素 方式1: Agent:推荐引擎。 Environment:用户。 Reward:如果一条新闻被点击,计+1,否则为0。一次推荐中10条新闻被点击的新闻个数作为Reward。 State:包含3个部分,分别是用户标签、候选新闻的新闻标签和用户前4屏 ...
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna。 本篇主要参考了UCL强化学习 ...
摘要:本文尝试以一种通俗易懂的形式对强化学习进行说明,将不会包含一个公式。 本文分享自华为云社区《强化学习浅述》,作者: yanghuaili 人。 机器学习可以大致分为三个研究领域:监督学习,无监督学习和强化学习(Reinforcement Learning,RL)。监督学习是大家最为 ...
1 简介 每一个生物都与其环境相互作用,并利用这些相互作用来改善自身的活动,以生存和增长。我们称基于与环境交互的动作修正为强化学习(RL)。这里有很多类型的学习,包括监督学习,非监督学习等。强化学习是指一个行动者或代理与它的环境相互作用,根据收到的刺激对其行为的响应,并修改其行为或控制政策 ...