[阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 目录 [阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 0x00 摘要 0x01 DIN 需要什么数据 0x02 如何产生数据 2.1 基础数据 ...
一 背景 对于阿里巴巴的用户行为数据:有两个指标对广告CTR预测准确率有重大影响。 多样性 Diversity :一个用户可以对很多不同品类的东西感兴趣 局部兴趣 Local activation :对于用户兴趣的多样性,只有一部分历史数据会影响到当次推荐的物品是否被点击,并非所有。 例子: Diversity体现在年轻的母亲的历史记录中体现的兴趣十分广泛,涵盖羊毛衫 手提袋 耳环 童装 运动装等 ...
2020-09-29 15:28 0 591 推荐指数:
[阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 目录 [阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 0x00 摘要 0x01 DIN 需要什么数据 0x02 如何产生数据 2.1 基础数据 ...
[阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 目录 [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 ...
1)什么是用户兴趣? 指用户在使用某APP时,所表现的行为倾向性,APP会根据用户的一系列行为表现来确实用户的兴趣。 2)兴趣模型的分类 按时间:长期兴趣,短期兴趣;长期兴趣指不容易随着时间而变化的兴趣,相对稳定;短期兴趣指变化比较频繁的兴趣。 按表现:显式的兴趣;隐式的兴趣 ...
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 ...
参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不同行为的注意力是不一样的,“相关”的行为历史看重一些,“不相关”的历史甚至可以忽略 ...
看看阿里如何在淘宝做推荐,实现“一人千物千面”的用户多样化兴趣推荐,首先总结下DIN、DIEN、DSIN: 传统深度学习在推荐就是稀疏到embedding编码,变成稠密向量,喂给NN DIN引入attention机制,捕获候选商品和用户浏览过的商品之间的关系(兴趣) DIEN ...
http://in.sdo.com/?p=1386 引言 在互联网上,信息的数量越来越大。用户可以选择的面也越来越广,推荐系统的任务是,要从众多的资讯中,过滤并挑选出符合每个用户口味的内容,推荐给不同用户。在这个过程中,对用户兴趣的刻画、建模是最为重要的一环。 传统的用户兴趣刻画 ...
深度学习在推荐系统、CTR预估领域已经有了广泛应用,如wide&deep、deepFM模型等,今天介绍一下由阿里算法团队提出的深度兴趣网络DIN和DIEN两种模型 paper DIN:https://arxiv.org/abs/1706.06978 DIEN:https ...